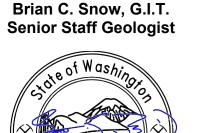
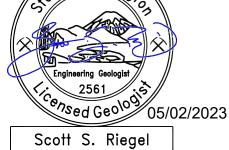


Geotechnical Engineering Construction Observation/Testing Environmental Services


> GEOTECHNICAL ENGINEERING STUDY PROPOSED RESIDENTIAL DEVELOPMENT 2430 AND 2436 – 74<sup>™</sup> AVENUE SOUTHEAST MERCER ISLAND, WASHINGTON


> > ES-8332.01

15365 N.E. 90th Street, Suite 100 Redmond, WA 98052 (425) 449-4704 Fax (425) 449-4711 www.earthsolutionsny.com PREPARED FOR

**BV HOMES, LLC** 

May 2, 2023





Scott S. Riegel, L.G., L.E.G. Associate Principal Geologist

GEOTECHNICAL ENGINEERING STUDY PROPOSED RESIDENTIAL DEVELOPMENT 2430 AND 2436 – 74<sup>TH</sup> AVENUE SOUTHEAST MERCER ISLAND, WASHINGTON

ES-8332.01

Earth Solutions NW, LLC 15365 Northeast 90<sup>th</sup> Street, Suite 100 Redmond, Washington 98052 Phone: 425-449-4704 | Fax: 425-449-4711 www.earthsolutionsnw.com

# Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

#### While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

# Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

#### Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will <u>not</u> be adequate to develop geotechnical design recommendations for the project.

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

#### **Read this Report in Full**

Costly problems have occurred because those relying on a geotechnicalengineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and refer to the report in full.* 

#### You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept*  responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

#### Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

# This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.* 

#### **This Report Could Be Misinterpreted**

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform constructionphase observations.

#### **Give Constructors a Complete Report and Guidance**

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note*  conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

#### **Read Responsibility Provisions Closely**

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

#### Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures.* If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

#### Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, *proper implementation of the geotechnical engineer's recommendations will <u>not</u> of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration* by including building-envelope or mold specialists on the design team. *Geotechnical engineers are <u>not</u> building-envelope or mold specialists.* 



Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent or intentional (fraudulent) misrepresentation.



May 2, 2023 ES-8332.01

# Earth Solutions NW LLC

Geotechnical Engineering, Construction Observation/Testing and Environmental Services

BV Homes, LLC 8015 Southeast 60<sup>th</sup> Street Mercer Island, Washington 98040

Attention: Mr. Vann Lanz

Greetings, Mr. Lanz:

Earth Solutions NW, LLC (ESNW), is pleased to present this geotechnical report to support the proposed single-family residential development. Based on the results of this study, the proposed construction is feasible from a geotechnical standpoint.

Our field observations indicate the site is underlain by about 15 to 20 feet of disturbed and fractured native silts (USCS: MH) identified as mass wasting deposits. Below the fractured silts, undisturbed native silt deposits were encountered, generally extending to the maximum exploration depth of about 46.5 feet below existing grades. Pervasive groundwater was not observed during the field exploration; however, light groundwater seepage was encountered within two of three borings advanced during the February 2023 subsurface exploration, generally between the depths of 20 to 25 feet bgs. The observed seepage zones did not appear to be associated with distinct changes in stratigraphy.

Based on the relatively soft and disturbed native silt soils encountered near surface, we recommend the project utilize helical piers advanced through the soft soils to bear within the undisturbed native soils for the proposed structures. In addition to providing higher bearing capacity values, the helical piers will transmit new structural loads to more competent soil layers at depth (i.e., at least 15 to 20 feet below existing grades), reducing the driving forces acting on the critical slip plane identified in the slope stability analysis.

The native fine-grained soils generated from site excavations be should not be used as structural fill. Fill placement should not occur along sloping areas of this site. In our opinion, a contingency should be provided in the budget for the export of fine-grained soil cuttings and import of suitable structural fill material, as needed.

Review of the referenced infiltration potential map indicates that infiltrating LID facilities are not permitted at the subject site. In our opinion, based on the disturbed and fine-grained native soil textures, mapped mass wasting deposits, and sloping surface grades, on-site infiltration should be considered infeasible from a geotechnical standpoint.

BV Homes, LLC May 2, 2023

This report provides preliminary geotechnical analyses and recommendations for the proposed construction. We appreciate the opportunity to be of service to you on this project. If you have any questions about this geotechnical engineering study, please call.

Sincerely,

## EARTH SOLUTIONS NW, LLC

Am

Brian C. Snow, G.I.T. Senior Staff Geologist

# **Table of Contents**

# ES-8332.01

# <u>PAGE</u>

| INTRODUCTION                                  | 1           |
|-----------------------------------------------|-------------|
| General                                       | 1           |
| Project Description                           | 2           |
|                                               | 2           |
| SITE CONDITIONS                               | 3           |
| Surface                                       | 3           |
| Subsurface                                    | 3<br>3<br>3 |
| Topsoil and Fill                              | 3           |
| Native Soil                                   | 4           |
| Geologic Setting                              | 4           |
| Groundwater                                   | 5           |
|                                               |             |
| GEOLOGICALLY HAZARDOUS AREAS – MICC 19.07.160 | 5           |
| Landslide Hazard Areas                        | 5           |
| Slope Stability Analysis                      | 6           |
| Seismic Hazard Areas                          | 7           |
| Erosion Hazard Areas                          | 8           |
|                                               | _           |
| DISCUSSION AND RECOMMENDATIONS                | 8           |
| <u>General</u>                                | 8           |
| Site Preparation and Earthwork                | 9           |
| Temporary Erosion Control                     | 9           |
| Excavations and Slopes                        | 10          |
| In-situ and Imported Soil                     | 10          |
| Structural Fill                               | 11          |
| Foundations                                   | 11          |
| Slab-on-Grade Floors                          | 12          |
| Retaining Walls                               | 13          |
| Drainage                                      | 13          |
| Infiltration Feasibility                      | 14          |
| Utility Support and Trench Backfill           | 14          |
| Seismic Design                                | 14          |
|                                               |             |
| LIMITATIONS                                   | 15          |
| Additional Services                           | 15          |

## **Table of Contents**

# Cont'd

#### ES-8332.01

# **GRAPHICS**

| Plate 1    | Vicinity Map                          |
|------------|---------------------------------------|
| Plate 2    | Boring Location Plan                  |
| Plate 3    | Retaining Wall Drainage Detail        |
| Plate 4    | Footing Drain Detail                  |
| APPENDICES |                                       |
| Appendix A | Subsurface Exploration<br>Boring Logs |

- Appendix B Laboratory Test Results
- Appendix C Slope/W Computer Output

## GEOTECHNICAL ENGINEERING STUDY PROPOSED RESIDENTIAL DEVELOPMENT 2430 AND 2436 – 74<sup>TH</sup> AVENUE SOUTHEAST MERCER ISLAND, WASHINGTON

## ES-8332.01

#### INTRODUCTION

#### <u>General</u>

This geotechnical engineering study was prepared for the proposed residential development to be located on the east side of 74<sup>th</sup> Avenue Southeast, just south of the intersection with Southeast 24<sup>th</sup> Street, in Mercer Island, Washington. The purpose of this study was to provide geotechnical recommendations to support the current development plans, as understood at the time of this study. To complete this study, ESNW performed the following services:

- Subsurface investigation through a series of exploratory borings to characterize the soil and groundwater conditions within accessible areas of the site.
- Laboratory testing of representative soil samples collected at the exploration locations.
- Review of on-site geologically hazardous areas and applicable Mercer Island Code.
- Engineering analyses and recommendations for the proposed construction.
- Preparation of this report.

The following documents and maps were reviewed in preparation of this study:

- Grading & Utilities Plan, prepared by D.R. Strong Consulting Engineers, Project No. 23001, dated February 9, 2023.
- Geotechnical Engineering Services Report, Aegis Mercer Island, prepared by GeoEngineers, Inc., File No. 19811-009-00, dated October 26, 2015.
- Geologic Map of Mercer Island, Washington, compiled by Kathy G. Troost and Aaron P. Wisher, dated October 2006.
- Web Soil Survey (WSS) online resource, maintained by the Natural Resources Conservation Service (NRCS) under the United States Department of Agriculture (USDA).
- Soil Survey of King County Area, Washington, by Snyder, D.E., Gale, P.S., and Pringle, R.F., USDA Soil Conservation Service, issued November 1973.

- Mercer Island Landslide Hazard Assessment, by Troost, K.G. and Wisher, A.P., dated April 2009.
- Mercer Island Seismic Hazard Assessment, by Troost, K.G. and Wisher, A.P., dated April 2009.
- Mercer Island Erosion Hazard Assessment, by Troost, K.G. and Wisher, A.P., dated April 2009.
- Low Impact Development Infiltration Feasibility on Mercer Island (Figure 3), prepared by Herrera, undated.
- Liquefaction Susceptibility of King County, Washington, Map 11-5, prepared by Tetra Tech, Inc. and endorsed by the King County Flood Control District, dated May 2010.
- Mercer Island City Code (MICC).

## Project Description

The subject site is located on the east side of 74<sup>th</sup> Avenue Southeast, approximately 300 to 550 feet south of the intersection with Southeast 24<sup>th</sup> Street, in Mercer Island, Washington.

Specific grading plans were not available at the time of this report; however, we understand the site will be developed with three new single-family residences and associated improvements. The residences will be located near the 74<sup>th</sup> Avenue Southeast frontage. Based on conditions observed during the fieldwork, we anticipate new structures will be supported on a system of helical piers, and that site grading will be limited in extent.

At the time of report submission, specific building load values were not available for review; however, we anticipate the proposed structures will consist of relatively lightly loaded wood framing. Based on our experience with similar developments, we estimate perimeter wall loads of about 2 to 3 kips per linear foot and slab-on-grade loading of 150 pounds per square foot (psf) will be incorporated into the final design.

We anticipate site stormwater improvements will tie in to existing stormwater facilities utilizing conventional detention and conveyance methods.

If the above design assumptions either change or are incorrect, ESNW should be contacted to review the recommendations provided in this report. ESNW should review final designs to verify the geotechnical recommendations provided in this report have been incorporated into the plans.

#### SITE CONDITIONS

#### <u>Surface</u>

The subject site is located on the east side of 74<sup>th</sup> Avenue Southeast, approximately 300 to 550 feet south of the intersection with Southeast 24<sup>th</sup> Street, in Mercer Island, Washington. The approximate site location is depicted on Plate 1 (Vicinity Map). The site is comprised of two adjoining tax parcels (King County Parcel Nos. 5315100-455 & -458) totaling about 0.77 acres of land area. Currently, the property is undeveloped, vacant, and heavily vegetated with mature trees, blackberries, and other low shrubs.

Per the City of Mercer Island GIS Portal, surface topography descends at variable gradients to the east for a total of about 40 feet of vertical relief within the property boundaries. The site is bordered to the north, east, and south by existing single- and multi-family residential development, and to the west by 74<sup>th</sup> Avenue Southeast.

#### Subsurface

An ESNW representative observed, logged, and sampled three soil borings advanced at accessible locations within the property boundaries on February 24, 2023, using a tracked drill rig and operators retained by ESNW. The maximum exploration depth was approximately 46.5 feet below the existing ground surface (bgs). Native soils were identified throughout each exploratory boring.

We also reviewed subsurface conditions as described in the referenced geotechnical engineering services report, prepared for the easterly adjacent parcel to gain additional insight into the overall site soil/groundwater conditions.

The approximate locations of the borings are depicted on Plate 2 (Boring Location Plan). Please refer to the boring logs provided in Appendix A for a more detailed description of subsurface conditions. Representative soil samples collected at the exploration locations were analyzed in general accordance with Unified Soil Classification System (USCS) and USDA methods and procedures.

#### **Topsoil and Fill**

Topsoil and organic material were observed within the upper 2.5 to 8 feet of existing grades at the boring locations, often containing organic detritus including woody roots, sticks, leaf litter, etc. The topsoil was characterized by its dark brown color, the presence of fine organic material, and small root intrusions.

No indications of fill were observed during the subsurface investigation; however, there is likely fill located along the frontage associated with roadway construction.

#### Native Soil

Generally, below about 8 feet bgs, native mineral-dominant soils were encountered, identified primarily as silts and clays (USCS: MH, CH) with variable plasticity indices and trace, variable amounts of sand. The native fine-grained soils (predominantly silts and clays) exhibited signs of disturbance and weathering extending to depths between roughly 15 and 20 feet bgs, including fractured/disturbed soil textures and light iron oxide staining. The weathered/disturbed native fine-grained soils shallower than about 20 feet bgs were primarily encountered in a soft to medium stiff (N-values between 8 and 15) and wet condition.

Underlying the weathered/disturbed native soils (i.e., below about 15 to 20 feet bgs), the native fine-grained soils transitioned to a relatively unweathered (gray), massive (no bedding or soil texture), and stiff condition (N-values between 15 and 21). The unweathered silts and clays were observed primarily in a wet condition at the time of exploration, with little variance in moisture content relative to the upper weathered soils. At boring location B-3 within the southern site portion and below about 30.5 feet bgs, the native soils exhibited a sharp transition to dense (N=40) and relatively clean sands with minor silt and gravel. Boring B-3 was terminated 31.5 feet bgs within the relatively clean sands.

Based on the results of the Atterberg limits analysis, in-situ moisture contents of the native silt soils (USCS: MH) encountered at boring locations B-1 and B-2 were generally (one to eight percent) below the plastic limit value calculated for that soil type. Moisture values of the native clay soils (USCS: CH) observed at boring location B-3 were generally (eight to ten percent) above the calculated plastic limit value for that soil.

## **Geologic Setting**

The referenced geologic map identifies Pre-Olympia fine-grained glacial deposits (Qpogf) as the primary geologic unit underlying the subject site. The geologic map also identifies a "scarp" feature within the northeastern site portion, and the entire project site is mapped within the "mass wastage deposits" (Qmw) overlay.

Pre-Olympia fine-grained glacial deposits are characterized primarily as laminated to massive silt and clay deposits with occasional sandy interbeds, localized iron-oxide cemented layers and sandy partings.

The online WSS resource identifies Kitsap silt loam (Map Unit Symbol: KpD) as the primary soil unit underlying the site. Kitsap series soils formed atop glacial lake deposits under a cover of conifer trees and shrubs. Per the referenced soil survey report, runoff over this soil unit is characterized as rapid, with severe erosion hazard and slippage potential.

Based on conditions encountered during the fieldwork, the native soils are generally representative of both disturbed and undisturbed fine-grained glacial sediments, consistent with the geologic mapping resources reviewed in this section.

#### Groundwater

Light groundwater seepage was encountered within two of three borings advanced during the February 2023 subsurface exploration, generally between the depths of 20 to 25 feet bgs. The observed seepage zones did not appear to be associated with distinct changes in stratigraphy.

In our experience, groundwater seepage is typical of glacially derived deposits and should be expected within site excavations, particularly during the wet season. Groundwater flow rates and elevations may fluctuate depending on many factors, including precipitation duration and intensity, the time of year, and soil conditions. In general, groundwater flow rates are higher during the winter, spring, and early summer months.

#### **GEOLOGICALLY HAZARDOUS AREAS – MICC 19.07.160**

We reviewed Mercer Island City Code (MICC) Chapter 19.07.160 – Geologically Hazardous Areas – to evaluate the presence of geologically hazardous areas at the subject site. Per the MICC, geologically hazardous areas within the City of Mercer Island (City) include areas susceptible to erosion, sliding, earthquake, or other geological events based on a combination of slope (gradient or aspect), soils, geologic material, hydrology, vegetation, or alterations, including landslide hazard areas, erosion hazard areas, and seismic hazard areas.

Review of the City's online GIS portal and critical area maps available in the City's online Map Gallery indicates the site contains potential slide areas, seismic hazard areas, and erosion hazard areas. An evaluation of each hazard type is provided below.

#### Landslide Hazard Areas

Landslide hazard areas are those areas subject to landslides based on a combination of geologic, topographic, and hydrologic factors. The referenced mapping resources indicate the site contains mapped areas of "known landslides," identified landslide locations within roughly 100 to 300 feet of the site on both east and west sides, a scarp feature in the northern portion of the site, and landslide and mass wasting deposits. Slope gradients across the site generally exceed 15 percent, with areas in excess of 40 percent along the eastern site margin.

Based on the landslide hazard definition criteria provided in the MICC and the site conditions outlined above, the site is classified as a landslide hazard area.

Per the MICC, "alteration of landslide hazard areas [...] and associated buffers may occur" pending the results of a critical area study. The critical areas study must determine that the project proposal: (a) will not adversely impact other critical areas, (b) will not adversely impact the subject property or adjacent properties, (c) will mitigate impacts to the geologically hazardous area consistent with best available science to the maximum extent reasonably possible such that the site is determined to be save, and (d) includes the landscaping of all disturbed areas outside of building footprints and installation of hardscape prior to final inspection.

MICC section 19.07.160(B)(3) requires a statement of risk from the geotechnical professional in order to allow alteration of landslide hazard areas and associated buffers. In our opinion, based on site conditions observed during the fieldwork and slope stability analyses attached to this report, "the landslide hazard area will be modified or the development has been designed so that the risk to the site and adjacent property is eliminated or mitigated such that the site is determined to be safe." Further discussion regarding landslide susceptibility is provided in the *Slope Stability Analysis* section of this report.

## Slope Stability Analysis

We evaluated slope stability across the subject site with primary focus on areas likely to be influenced by the proposed modifications. Global slope stability analyses were completed using the 2021 GeoStudio Slope/W modeling program to reflect existing and proposed conditions in both static and seismic scenarios, including foundation loading where applicable. The analyses focused primarily on deep-seated rotational failures and were completed using topographic data provided on the referenced Grading and Utility Plan and King County iMap resourcing for topography outside the subject site. The cross-section line (A-A') is depicted on Plate 2 (Boring Location Plan).

The soil stratigraphy was modeled as two distinct soil units based on conditions observed during the subsurface exploration. We utilized relatively conservative strength parameters in our slope models, outlined in the table below. Additional modeling parameters are attached to this letter report (see Appendix C). Groundwater was not included in the modeling as a pervasive groundwater condition was not observed during the February 2023 subsurface exploration.

| Soil Unit                                                           | Density or<br>Consistency | Unit<br>Weight<br>(pcf) | Cohesion<br>(psf) | Internal Friction<br>Angle (deg) |
|---------------------------------------------------------------------|---------------------------|-------------------------|-------------------|----------------------------------|
| Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf)   | Soft to medium stiff      | 110                     | 750               | 5                                |
| Undisturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) | Medium stiff to stiff     | 115                     | 1500              | 7                                |

Our analyses indicate the proposed site modifications will have minimal impacts to slope stability compared to the existing condition, and that the critical failure plane in all scenarios modeled is located entirely within the zone of disturbed/fractured native soils identified as historic mass wasting deposits. Safety factors for the proposed condition (including new foundation and seismic loading) remain at acceptable levels from a geotechnical standpoint.

It should be noted that foundation loading in the proposed condition was modeled at the existing ground surface. However, we anticipate the project will implement a system of helical piers to effectively transmit new structural loads to more competent soil layers at depth, reducing additional driving forces acting on the identified critical slip plane. The reduction of driving forces imparted on the identified critical slip plane is anticipated to increase factors of safety in the post-construction condition.

#### Seismic Hazard Areas

Seismic hazard areas are areas subject to severe risk of damage as a result of earthquake induced ground shaking, slope failure, settlement, soil liquefaction or surface faulting. The referenced mapping resources indicate the site contains mapped areas of known or suspected seismic hazard, which includes a scarp feature in the northern portion of the site and landslide and mass wastage deposits underlying the site. In our opinion, and based on the mapping resources reviewed and the observed site conditions, the primary risk associated with seismic hazard at the subject site relates to seismically induced slope failure. Slope failure and the effects of seismically induced ground shaking on slope stability are addressed in the *Landslide Hazard Areas* and *Slope Stability Analysis* sections of this report.

In our opinion, and consistent with the referenced liquefaction susceptibility map, site susceptibility to liquefaction may be considered very low. The highly cohesive fine-grained soils and lack of a pervasive groundwater condition were the primary bases for this opinion. Furthermore, due to the low risk of liquefaction, seismically induced settlements are likely to be limited in magnitude.

Fault mapping of Mercer Island and the surrounding region indicates the site falls within the Seattle Fault Zone. The Seattle Fault Zone represents the area where several parallel strands of the Seattle fault have either broken the ground surface or caused deformation of geologic materials. In Seattle, evidence for offset along the Seattle fault consists of uplifted beach deposits, down-dropped tidal marshes, offset strata, and deformation such as sheared and tightly folded strata near the leading (northern) edge of the fault. At least two strands of the Seattle fault cross the island in an east-west orientation, the nearest of which is less than one mile south of the subject site.

In the event that a shallow crustal fault associated with the Seattle Fault Zone activates during an earthquake, the subject site will almost certainly experience some degree of ground shaking that is likely to vary depending on the magnitude of the earthquake, as well as the distance from and depth of the rupture zone. However, in our opinion, the hazard to the subject site is no greater than that of the surrounding community, and the risk of surface rupture within the property boundaries is very low.

Per the MICC, "alteration of [...] seismic hazard areas and associated buffers may occur" pending the results of a critical area study. The critical areas study must determine that the project proposal: (a) will not adversely impact other critical areas, (b) will not adversely impact the subject property or adjacent properties, (c) will mitigate impacts to the geologically hazardous area consistent with best available science to the maximum extent reasonably possible such that the site is determined to be save, and (d) includes the landscaping of all disturbed areas outside of building footprints and installation of hardscape prior to final inspection.

MICC section 19.07.160(B)(3) requires a statement of risk from the geotechnical professional in order to allow alteration of seismic hazard areas and associated buffers. In our opinion, based on site conditions observed during the fieldwork and slope stability analyses attached to this report, "[this] evaluation of site-specific subsurface conditions demonstrates that the proposed development is not located in a seismic hazard area." Further discussion regarding potential seismic impacts to slope stability is provided in the *Slope Stability Analysis* section of this report.

#### **Erosion Hazard Areas**

Erosion hazard areas are those areas greater than 15 percent slope and subject to severe risk of erosion due to wind, rain, water, slope, and other natural agents including those soil types and/or areas identified by the U.S. Department of Agriculture's Natural Resources Conservation Service as having a "severe" or "very severe" rill and inter-rill erosion hazard.

The referenced mapping resources indicate the site contains mapped areas of known or suspected erosion hazard areas, with supplemental data indicating mixed infiltration potential (interbedded or mixed fine and coarse-grained deposits) and estimated slope gradients ranging from 15 to 39 percent.

Infiltration potential can influence erosivity by loosening surface material for removal by erosion. Where sandy soils (with relatively high inferred infiltration rates) are exposed at the surface, the City's Erosion Hazard Assessment map delineates areas of potential erosion hazard. Based on our observations of fine-grained soils, infiltration potential at the surface is considered very low to negligible, and is not expected to contribute to erosion hazard at the subject site.

In any case, surface grades at the subject site generally exceed 15 percent gradient and, as indicated in the *Geologic Setting* section of this report, the native Kitsap silt loam soils are characterized by the USDA with severe erosion hazard. The site is therefore classified as an erosion hazard area.

All development proposals must comply with the requirements of MICC Chapter 15.09 (Storm Water Management). Typical construction stormwater management methods are anticipated to be adequate for mitigating erosion potential during the earthwork and construction phases of the project. At a minimum, silt fencing should be placed along the downslope site margins, and soil stockpiles should be covered with plastic sheeting when not in use. If construction occurs during periods of wet weather, methods to control surface water runoff will be necessary. Construction stormwater should neither be allowed to collected at the top of slope nor flow over steeply sloping areas. Final drainage plans should be designed such that stormwater is collected and diverted away from slopes exceeding 15 percent to an approved discharge location.

#### **DISCUSSION AND RECOMMENDATIONS**

#### <u>General</u>

Based on the results of this study, the proposed construction is feasible from a geotechnical standpoint. Our field observations indicate the site is underlain by about 15 to 20 feet of disturbed and fractured native silts (USCS: MH) identified as mass wasting deposits. Below the fractured silts, undisturbed native silt and clay deposits were encountered, generally extending to the maximum exploration depth of about 46.5 feet below existing grades. Pervasive groundwater was not observed during the field exploration; however, light groundwater seepage was encountered within two of three borings advanced during the February 2023 subsurface exploration, generally between the depths of 20 to 25 feet bgs. The observed seepage zones did not appear to be associated with distinct changes in stratigraphy.

Based on the relatively loose and disturbed native silt soils encountered near surface, we anticipate the project will implement a system of helical piers for the proposed structures. In addition to providing higher bearing capacity values, the helical piers will transmit new structural loads to more competent soil layers at depth (i.e., at least 15 to 20 feet below existing grades), reducing the driving forces acting on the critical slip plane identified in the slope stability analysis.

The native fine-grained soils are not considered "granular soils," and therefore the fine-grained cuttings generated from site excavations be should not be used as structural fill. Fill placement should not occur along sloping areas of this site. In our opinion, a contingency should be provided in the budget for the export of fine-grained soil cuttings and import of suitable structural fill material, as needed.

Review of the referenced infiltration potential map indicates that infiltrating LID facilities are not permitted at the subject site. In our opinion, based on the disturbed and fine-grained native soil textures, mapped mass wasting deposits, and sloping surface grades, on-site infiltration should be considered infeasible from a geotechnical standpoint.

#### Site Preparation and Earthwork

Site preparation activities should consist of installing temporary erosion control measures and performing site stripping within the designated clearing limits. Subsequent earthwork activities will likely involve helical pier installation, drainage improvements, and infrastructure and utility installations.

#### Temporary Erosion Control

The following temporary erosion and sediment control (TESC) BMPs are offered:

- Temporary construction entrances and drive lanes, consisting of at least six inches of quarry spalls, should be considered to both minimize off-site soil tracking and provide stable surfaces at site entrances. Placing geotextile fabric underneath the quarry spalls will provide greater stability, if needed.
- Silt fencing should be placed around appropriate portions of the site perimeter.
- When not in use, soil stockpiles should be covered or otherwise protected to reduce the potential for soil erosion, especially during periods of wet weather.
- Temporary measures for controlling surface water runoff, such as interceptor trenches, sumps, or interceptor swales, should be installed prior to beginning earthwork activities.
- Dry soils disturbed during construction should be wetted to minimize dust and airborne soil erosion.

Additional TESC BMPs, as specified by the project civil engineer and indicated on the plans, should be incorporated into construction activities, as necessary. Temporary erosion control measures must be actively managed and may be modified during construction as site conditions require, as approved by the site erosion control lead to ensure the BMPs are performing as intended.

Given the high fines content of the native soils that may be exposed during temporary grading and the determination that the site is located within an erosion hazard area, enhanced erosion control measures may be required to provide an adequate level of protection for adjacent properties. The contractor must be prepared to employ additional TESC BMPs during construction depending on soil conditions encountered.

#### Excavations and Slopes

Excavation activities are likely to expose soft to medium stiff native soils within the upper 15 to 20 feet of existing grades, becoming stiff or better at depth. Groundwater seepage should be anticipated within site excavations depending on the time of year.

Based on the soil conditions observed at the subsurface exploration locations, the following maximum allowable temporary slope inclinations may be used. The applicable Federal Occupation Safety and Health Administration and Washington Industrial Safety and Health Act soil classifications are also provided.

| • | Areas exposing groundwater seepage       | 1.5H:1V (Type C)  |
|---|------------------------------------------|-------------------|
| • | Loose or previously disturbed soil, fill | 1.5H:1V (Type C)  |
| • | Medium dense native soil                 | 1H:1V (Type B)    |
| • | Very dense native soil                   | 0.75H:1V (Type A) |

Permanent slopes should be planted with vegetation to both enhance stability and minimize erosion and should maintain a gradient of 2H:1V or flatter. The presence of perched groundwater may cause localized sloughing of temporary slopes; groundwater seepage should be expected within site excavations, particularly if excavations take place during the wet season. An ESNW representative should observe temporary and permanent slopes to confirm the slope inclinations are suitable for the exposed soil conditions and to provide additional excavation and slope recommendations, as necessary. If the recommended temporary slope inclinations cannot be achieved, temporary shoring may be necessary to support excavations.

#### In-situ and Imported Soil

The in-situ soils observed at the subject site can be characterized as having very high sensitivity to moisture and are not suitable for use as structural fill. Soils anticipated to be exposed on site will degrade if exposed to wet weather and construction traffic. Fine-grained soils generated from excavations be should be removed from the site and should not be used as structural fill.

In our opinion, a contingency should be provided in the budget for the export of fine-grained soil cuttings and import of suitable structural fill material, as needed.

Imported soil intended for use as structural fill should be evaluated by ESNW during construction. The imported soil must be workable to the optimum moisture content, as determined by the Modified Proctor Method (ASTM D1557), at the time of placement and compaction. During wet weather conditions, imported soil intended for use as structural fill should consist of a well-graded, granular soil with a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction).

#### Structural Fill

Structural fill is defined as compacted soil placed in foundation, slab-on-grade, roadway, permanent slope, retaining wall, and utility trench backfill areas.

The native fine-grained soils are not considered "granular soils," and therefore the fine-grained cuttings generated from site excavations be should be removed from the site and should not be used as structural fill. Fill placement should not occur along sloping areas of this site.

Structural fill placed and compacted during site grading activities should meet the following specifications and guidelines:

| • | Structural fill material       | Granular soil                 |
|---|--------------------------------|-------------------------------|
| • | Moisture Content               | At or slightly above optimum* |
| • | Relative compaction (minimum)  | 95 percent (Modified Proctor) |
| • | Loose lift thickness (maximum) | 12 inches                     |

\* Soil shall not be placed dry of optimum and should be evaluated by ESNW during construction.

With respect to underground utility installations and backfill, local jurisdictions may dictate the soil type(s) and compaction requirements. Unsuitable material or debris must be removed from structural areas if encountered.

#### Foundations

Based on the relatively soft fine-grained soils encountered near surface at the exploration locations and historical evidence of ancient slope failures, the new residential structures planned for this site should be supported on a helical pier system. In any case, ESNW should review the proposed grading plans to confirm the recommendations in this report remain applicable or to provide additional or revised recommendations for foundation support.

Given the geologic mapping of mass wastage deposits on site and the presence of sensitive, fine-grained native soils, helical piers are recommended for foundation support at this site. The inclusion of helical pier systems into the project design provides some advantages in terms of long-term slope stability and construction related disturbances.

Helical piers are effective at transmitting structural loads to bearing soil strata at depth. Helical piers installed into relatively dense, undisturbed native soils (i.e., at least 15 to 20 feet below existing grades based on the observed subsurface conditions) will provide higher soil bearing capacities without the need for significant grade cuts to expose suitable foundation soils. Furthermore, the potential for future slope failure is reduced by transmitting new structural loads to the bottom of the helical piers, embedded into undisturbed native soils below the ancient/critical failure planes.

Provided the structures will be supported as described above, the following parameters may be used for preliminary design of the new foundations:

| • | Shaft Diameter                     | 2.875 inch |
|---|------------------------------------|------------|
| • | Axial Capacity Tension/Compression | 30 kips    |
| • | Minimum Depth                      | 20 feet    |

A one-third increase in the allowable soil bearing capacity can be assumed for short-term wind and seismic loading conditions. With structural loading as expected, total settlement in the range of one inch is anticipated, with differential settlement of about one-half inch. Most of the settlement should occur during construction as dead loads are applied.

#### Slab-on-Grade Floors

Slab-on-grade floors should be supported on a firm and unyielding subgrade consisting of competent native soil or at least 12 inches of new structural fill. Unstable or yielding areas of the subgrade should be recompacted, or overexcavated and replaced with suitable structural fill, prior to slab construction.

A capillary break consisting of a minimum of four inches of free-draining crushed rock or gravel should be placed below the slab. The free-draining crushed rock or gravel material should have a fines content of 5 percent or less (defined as the percent passing the No. 200 sieve, based on the minus three-quarter-inch fraction). In areas where slab moisture is undesirable, installation of a vapor barrier below the slab should be considered. If used, the vapor barrier should consist of a material specifically designed to function as a vapor barrier and should be installed in accordance with the manufacturer's specifications.

#### **Retaining Walls**

New retaining walls must be designed to resist earth pressures and applicable surcharge loads. The following parameters may be used for retaining wall design:

| Active earth pressure (unrestrained condition) | 42 pcf                                          |
|------------------------------------------------|-------------------------------------------------|
| At-rest earth pressure (restrained condition)  | 62 pcf                                          |
| Traffic surcharge (passenger vehicles)         | 70 psf (rectangular distribution)               |
| Passive earth pressure                         | 200 pcf<br>(level surface for at least 10 feet) |
| Coefficient of friction                        | 0.40                                            |
| Seismic surcharge                              | 8H psf*                                         |

\* Where H equals the retained height (in feet).

The passive earth pressure and coefficient of friction values include a safety factor of 1.5. Additional surcharge loading from adjacent foundations, sloped backfill, or other loads should be included in the retaining wall design.

Retaining walls should be backfilled with free-draining material that extends along the height of the wall and a distance of at least 18 inches behind the wall. The upper 12 inches of the wall backfill may consist of a less permeable soil, if desired.

Drainage should be provided behind retaining walls such that hydrostatic pressures do not develop. If drainage is not provided, hydrostatic pressures should be included in the wall design. A perforated drainpipe should be placed along the base of the wall and connected to an approved discharge location. A typical retaining wall drainage detail is provided on Plate 3.

#### <u>Drainage</u>

Groundwater seepage will likely be encountered within site excavations, particularly during the wet season. Temporary measures to control surface water runoff and groundwater during construction would likely involve passive elements such as interceptor trenches, interceptor swales, and sumps. ESNW should be consulted during preliminary grading to identify areas of seepage and provide recommendations to reduce the potential for seepage-related instability.

Finish grades must be designed to direct surface water away from the new structures and/or slopes for a distance of at least 10 feet or as setbacks allow. Water must not be allowed to pond adjacent to the new structures and/or slopes. In our opinion, drainage should be provided along the building perimeter footings. A typical foundation drain detail is provided on Plate 4.

#### Infiltration Feasibility

Review of the referenced infiltration potential map indicates that infiltrating LID facilities are not permitted at the subject site. In our opinion, based on the disturbed and fine-grained native soil textures, mapped mass wasting deposits, and sloping surface grades, on-site infiltration should be considered infeasible from a geotechnical standpoint.

#### Utility Support and Trench Backfill

The soils observed at the subsurface exploration locations are generally suitable for support of utilities. However, the use of the native soil as structural backfill in the utility trench excavations is not recommended. Imported granular fill should be used for utility backfill applications.

Utility trench backfill should be placed and compacted to the specifications of structural fill provided in this report or to the applicable requirements of the presiding jurisdiction.

#### Seismic Design

The 2018 International Building Code (2018 IBC) recognizes the most recent edition of the Minimum Design Loads for Buildings and Other Structures manual (ASCE 7-16) for seismic design, specifically with respect to earthquake loads. Based on our current understanding of the project design and soil conditions encountered at the boring locations, Site Class E should be considered for preliminary design.

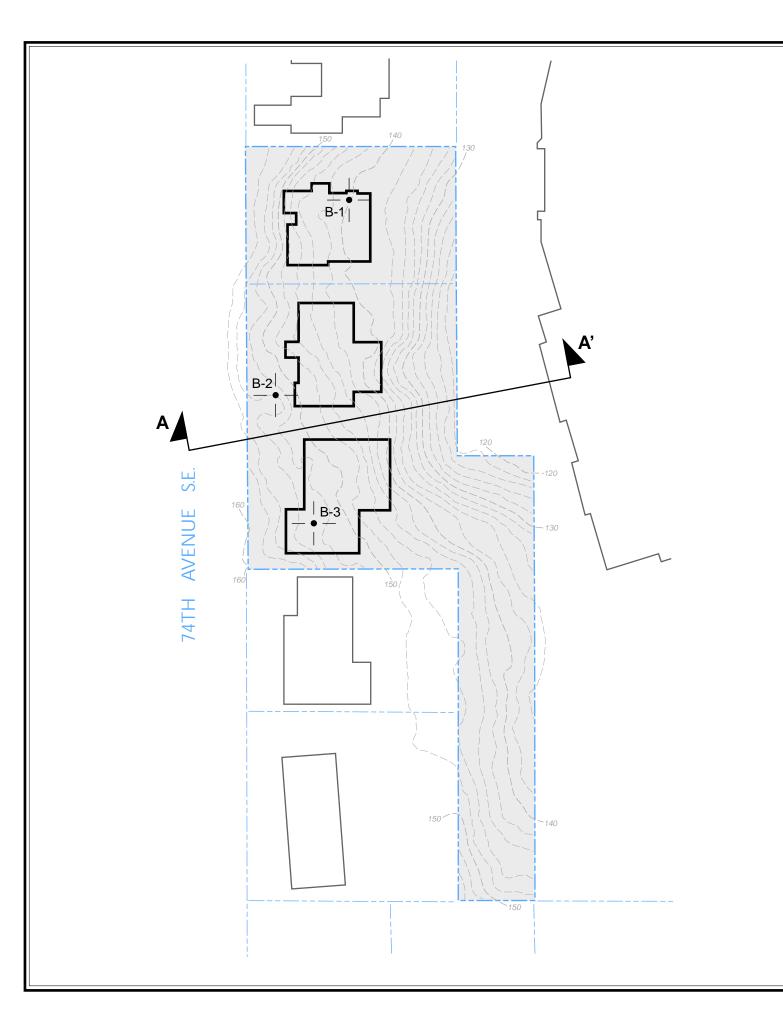
The parameters and values provided below are recommended for seismic design per the 2018 IBC.

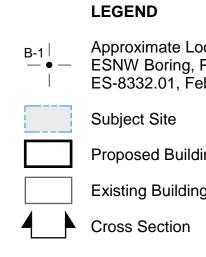
| Parameter                                                       | Value |
|-----------------------------------------------------------------|-------|
| Site Class                                                      | E*    |
| Mapped short period spectral response acceleration, $S_S$ (g)   | 1.392 |
| Mapped 1-second period spectral response acceleration, $S_1(g)$ | 0.485 |
| Site modified peak ground acceleration, PGA <sub>M</sub> (g)    | 0.658 |

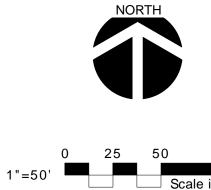
\* Based on a standard penetration resistance value less than 15 and observed soil profiles having more than 10 feet of soil with plasticity indices greater than 20 and moisture contents greater than 40 percent.

In accordance with ASCE 7-16 Section 11.4.8, a ground motion hazard analysis shall be performed for structures on Site Class E sites with  $S_S$  greater than or equal to 1.0. Ground motion analyses are not required for structures other than seismically isolated structures and structures with damping systems where structures on Site Class E sites with  $S_S$  greater than or equal to 1.0, provided the site coefficient  $F_a$  is taken as equal to that of Site Class C.

Further discussion between the project structural engineer, the project owner, and ESNW may be prudent to determine the possible impacts to the structural design due to increased earthquake load requirements under the 2018 IBC. Given the preliminary stage of the project design, and pending further involvement with the project structural engineer, completion of a site-specific seismic hazard analysis and development of site-specific response spectra may be warranted. ESNW would be pleased to provide additional consulting services to aid with seismic design efforts, including supplementary geotechnical and geophysical investigation, upon request.


#### **LIMITATIONS**

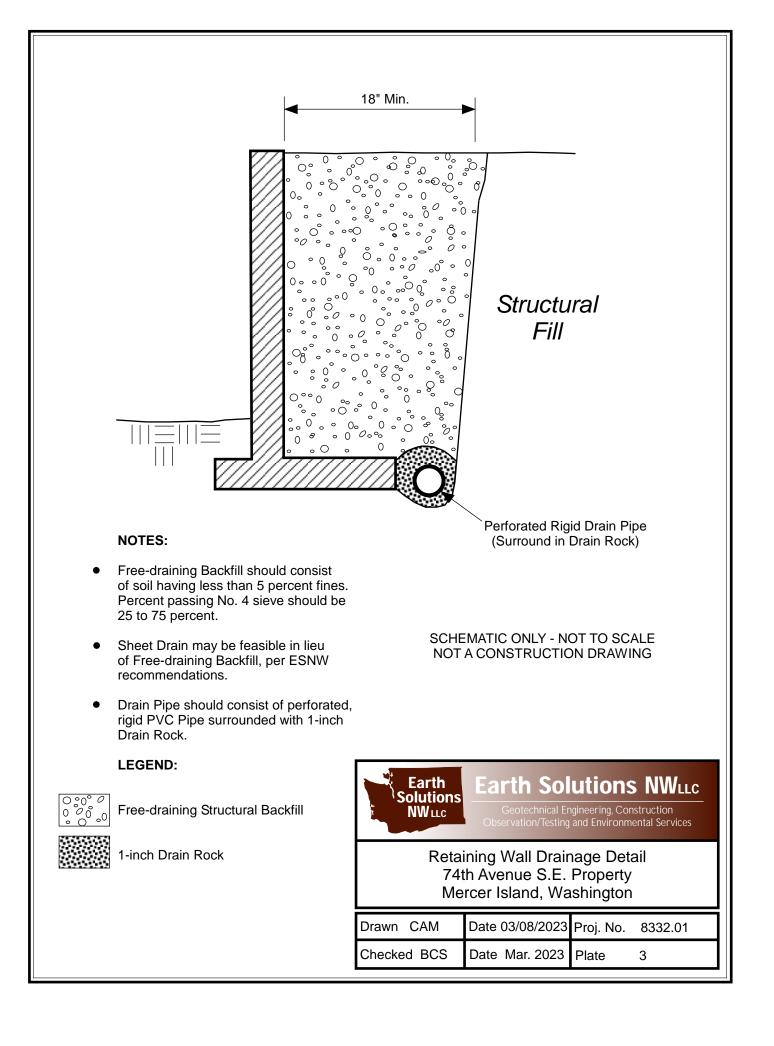

This study has been prepared for the exclusive use of BV Homes, LLC, and its representatives. No warranty, express or implied, is made. The recommendations and conclusions provided in this study are professional opinions consistent with the level of care and skill that is typical of other members in the profession currently practicing under similar conditions in this area. Variations in the soil and groundwater conditions observed at the test locations may exist and may not become evident until construction. ESNW should reevaluate the conclusions provided in this geotechnical engineering study if variations are encountered.

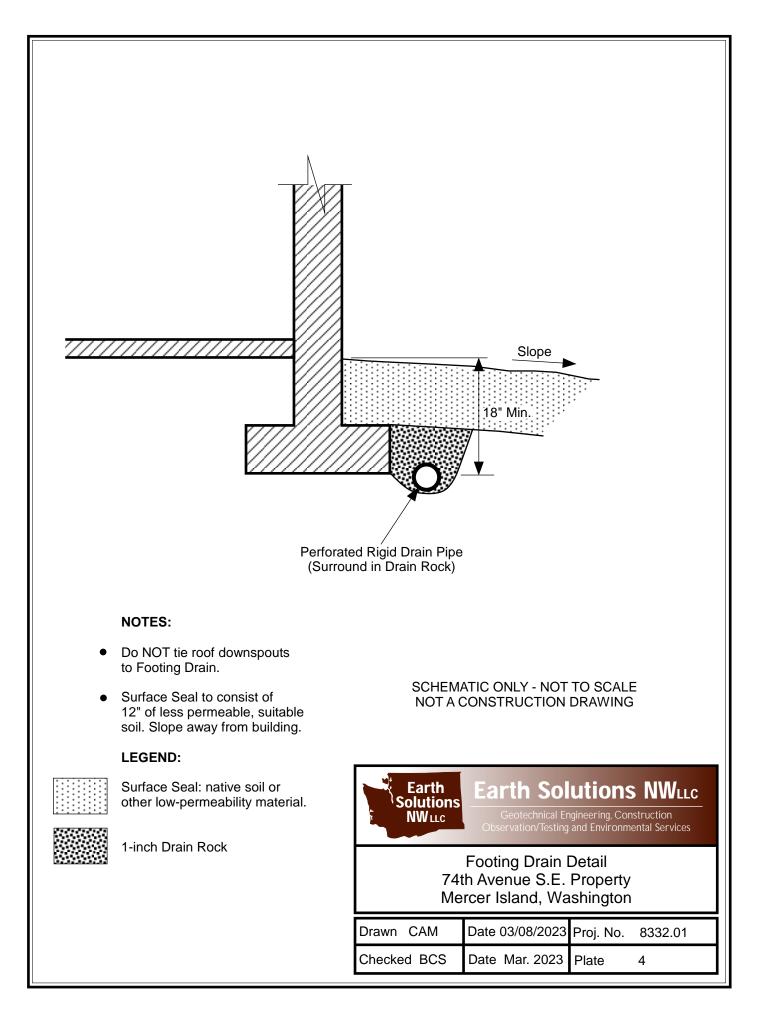

#### Additional Services

ESNW should have an opportunity to review final project plans with respect to the geotechnical recommendations provided in this report. The geotechnical recommendations provided in this report are considered preliminary, are intended to support initial feasibility consideration, and should be reviewed and/or updated as project plans develop. ESNW should also be retained to provide testing and consultation services during construction.








NOTE: The graphics shown on this plate are not in purposes or precise scale measurements, but only approximate test locations relative to the approxim existing and / or proposed site features. The inforr is largely based on data provided by the client at t study. ESNW cannot be responsible for subseque or interpretation of the data by others.

NOTE: This plate may contain areas of color. ESN responsible for any subsequent misinterpretation resulting from black & white reproductions of this place.

| ocation of<br>Proj. No.<br>Teb. 2023<br>ding<br>ng                                                                                                                                             | Boring Location Plan<br>74th Avenue S.E. Property<br>Mercer Island, Washington                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 100<br>in Feet                                                                                                                                                                                 | Earth Earth Solutions NWLLC Colutions NWLLC Construction UNULLC Construction Construction Construction |
| t intended for design<br>nly to illustrate the<br>ximate locations of<br>ormation illustrated<br>t the time of our<br>uent design changes<br>SNW cannot be<br>n of the information<br>s plate. | Drawn<br>CAM<br>Checked<br>BCS<br>Date<br>03/23/2023<br>Proj. No.<br>8332.01<br>Plate<br>2             |





## Appendix A

#### Subsurface Exploration Boring Logs

#### ES-8332.01

Subsurface conditions on site were explored on February 24, 2023, by advancing three exploratory borings at accessible locations within the property boundaries using a machine and operators retained by our firm. The approximate locations of the borings are illustrated on Plate 2 of this study. The subsurface exploration logs are provided in this Appendix. The borings were advanced to a maximum depth of about 46.5 feet bgs.

The final logs represent the interpretations of the field logs and the results of laboratory analyses. The stratification lines on the logs represent the approximate boundaries between soil types. In actuality, the transitions may be more gradual.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | irse<br>/e                                 |                       | GW   | Well-graded gravel with<br>or without sand, little to                            | Moisture                                                   | e Content                              | Symbols                                                                                   |                        |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------|------|----------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------|------------------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of Coarse<br>4 Sieve                       | Line<br>Line          |      | no fines                                                                         | Dry - Absence of n<br>the touch                            | noisture, dusty, dry to                |                                                                                           |                        |           |
| -<br>. 200 Sieve<br>- More Than 50% of<br>in Retained on No. 4<br>Fines                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                       | GP   | Poorly graded gravel with<br>or without sand, little to<br>no fines              | Damp - Perceptible optimum MC                              | e moisture, likely below               | Static water                                                                              |                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |                       |      | Silty gravel with or without                                                     | at/near optimum M                                          |                                        | Seal<br>✓ ∷ Filter pack with<br>∵ ∷ blank casing<br>↔ ∴ ↔ section                         |                        |           |
| Coarse-Grained Soils -<br>More Than 50% Retained on No. 200<br>or More of Coarse Gravels - More<br>ses No. 4 Sieve Fraction Ret<br>< 5% Fines > 12% Fines                                                                                                                                                                                                                                                                                                                                                                   |                                            | GM                    | sand | likely above optime                                                              | e but not free draining,<br>um MC<br>earing - Visible free | Screened casing<br>                    |                                                                                           |                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3ravels<br>Fracti                          | 12%                   | GC   | Clayey gravel with or without sand                                               | water, typically bel                                       | ow groundwater table                   | e Density and Consistency                                                                 |                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                   |                       |      |                                                                                  | Coarse-Grain                                               | -                                      | Test Symbols & Units                                                                      |                        |           |
| e-G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ð                                          | ۵<br>۵                | sw   | Well-graded sand with<br>or without gravel, little to                            | Density                                                    | SPT blows/foot                         |                                                                                           |                        |           |
| ars<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Coarse<br>Sieve                            | Fines                 |      | no fines                                                                         | Very Loose                                                 | < 4                                    | Fines = Fines Content (%)                                                                 |                        |           |
| n So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U<br>S<br>S<br>S<br>S<br>S<br>S            | 2% E                  | •    |                                                                                  | Loose                                                      | 4 to 9                                 | MC = Moisture Content (%)                                                                 |                        |           |
| Tha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            | N<br>N                | SP   | Poorly graded sand with or without gravel, little to                             | Medium Dense                                               | 10 to 29                               | DD = Dry Density (pcf)                                                                    |                        |           |
| More Th<br>Sands - 50% or More                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mor<br>es N                                |                       |      | no fines                                                                         | Dense<br>Very Dense                                        | 30 to 49<br>≥ 50                       | Str = Shear Strength (tsf)                                                                |                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ands - 50% or More<br>Fraction Passes No.  | Ś                     | SM   | Silty sand with or without                                                       |                                                            |                                        | PID = Photoionization Detector (ppm)                                                      |                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 50<br>on F                               | line                  | JIVI | gravel                                                                           | Fine-Grained                                               |                                        | OC = Organic Content (%)                                                                  |                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nds .<br>racti                             | 2% F                  |      |                                                                                  | Consistency<br>Very Soft                                   | SPT blows/foot<br>< 2                  | CEC = Cation Exchange Capacity (meq/100 g                                                 |                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sa                                         | <b>∽</b> /////        | SC   | Clayey sand with or without gravel                                               | Soft                                                       | 2 to 3                                 | LL = Liquid Limit (%)                                                                     |                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |                       |      |                                                                                  | Medium Stiff                                               | 4 to 7                                 | PL = Plastic Limit (%)                                                                    |                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                                         |                       |      | Silt with or without sand                                                        | Stiff<br>Very Stiff                                        | 8 to 14<br>15 to 29                    | PI = Plasticity Index (%)                                                                 |                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s<br>han                                   |                       | ML   | or gravel; sandy or gravelly silt                                                | Hard                                                       | ≥ 30                                   |                                                                                           |                        |           |
| Sieve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Silts and Clays<br>Liquid Limit Less Than  |                       |      | Clay of low to medium plasticity; lean clay with                                 |                                                            | Componen                               | ent Definitions                                                                           |                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s an<br>nit L                              |                       | CL   | or without sand or gravel;<br>sandy or gravelly lean clay                        | Descriptive Term                                           |                                        | e and Sieve Number                                                                        |                        |           |
| s -<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Silts                                      |                       | 4    |                                                                                  | Boulders                                                   | Larger thar<br>3" to 12"               | ו 12"                                                                                     |                        |           |
| Soil<br>No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | quic                                       |                       |      | · [                                                                              | OL                                                         | Organic clay or silt of low plasticity | Cobbles<br>Gravel                                                                         | 3 to 12<br>3" to No. 4 | (4 75 mm) |
| Grained<br>Passes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                   |                       |      |                                                                                  | Coarse Gravel<br>Fine Gravel                               | 3" to 3/4"                             | 4 (4.75 mm)                                                                               |                        |           |
| Gra<br>Pae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ð                                          |                       |      | Elastic silt with or without                                                     | Sand                                                       |                                        | 5 mm) to No. 200 (0.075 mm)                                                               |                        |           |
| Fine-Grained<br>50% or More Passes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ys<br>r Mor                                |                       | МН   | sand or gravel; sandy or gravelly elastic silt                                   | Coarse Sand<br>Medium Sand<br>Fine Sand                    | No. 10 (2.0                            | 5 mm) to No. 10 (2.00 mm)<br>10 mm) to No. 40 (0.425 mm)<br>125 mm) to No. 200 (0.075 mm) |                        |           |
| or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cla<br>50 o                                |                       |      | Clay of high plasticity;<br>fat clay with or without                             | Silt and Clay                                              | Smaller that                           | an No. 200 (0.075 mm)                                                                     |                        |           |
| 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Silts and Clays<br>Liquid Limit 50 or More |                       | СН   | sand or gravel; sandy or<br>gravelly fat clay                                    |                                                            | Modifier I                             | Definitions                                                                               |                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Silt<br>Jid L                              |                       |      |                                                                                  | Percentage by<br>Weight (Approx.)                          | Modifier                               |                                                                                           |                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ligu                                       |                       | ОН   | Organic clay or silt of medium to high plasticity                                | < 5                                                        | Trace (san                             | d, silt, clay, gravel)                                                                    |                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~                                          |                       | 9    |                                                                                  | 5 to 14                                                    | Slightly (sa                           | ndy, silty, clayey, gravelly)                                                             |                        |           |
| Highly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Organic<br>Soils                           | <u>77 77</u><br>77 7  | PT   | Peat, muck, and other                                                            | 15 to 29                                                   | Sandy, silty                           | <i>ı</i> , clayey, gravelly                                                               |                        |           |
| Ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | с<br>S                                     |                       | 1    | highly organic soils                                                             | ≥ 30                                                       | Very (sand                             | y, silty, clayey, gravelly)                                                               |                        |           |
| FILL Made Ground Classifications of soils in this geotechnical report and as shown on the exploration logs are based on visual field and/or laboratory observations, which include density/consistency, moisture condition, grain size, and plasticity estimates, and should not be construed to imply field or laboratory testing unless presented herein. Visual-manual and/or laboratory classification methods of ASTM D2487 and D2488 were used as an identification guide for the Unified Soil Classification System. |                                            |                       |      |                                                                                  |                                                            |                                        |                                                                                           |                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            | Eart<br>Soluti<br>NWL | ons  | Earth Solution<br>Geotechnical Engineering, C<br>Observation/Testing and Environ | S NWLLC                                                    |                                        |                                                                                           |                        |           |

# EXPLORATION LOG KEY

| Earth Solutions NW, LLC<br>Solutions<br>NWLC<br>Earth Solutions NW, LLC<br>15365 N.E. 90th Street, Suite 100<br>Redmond, Washington 98052<br>Telephone: 425-449-4704<br>Fax: 425-449-4711 |                       |            |                             |                                                            |              |                | BORING NUMBER B-1<br>PAGE 1 OF 3                                  |   |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|-----------------------------|------------------------------------------------------------|--------------|----------------|-------------------------------------------------------------------|---|--|--|
| PRO                                                                                                                                                                                       | JECT NU               | MBER       | ES-8332.0                   | )1                                                         |              |                | PROJECT NAME 74th Avenue S.E. Property                            |   |  |  |
|                                                                                                                                                                                           |                       |            |                             |                                                            |              |                | GROUND ELEVATION 140 ft                                           |   |  |  |
| DRIL                                                                                                                                                                                      | LING CO               | NTRAC      | CTOR Bore                   | etec1, Inc.                                                |              |                | LATITUDE _47.58819 LONGITUDE122.24008                             |   |  |  |
| LOG                                                                                                                                                                                       | GED BY                | BCS        |                             | CHECKED                                                    | <b>BY</b> _S | SR             | GROUND WATER LEVEL:                                               |   |  |  |
|                                                                                                                                                                                           |                       |            |                             |                                                            |              |                |                                                                   |   |  |  |
| SURF                                                                                                                                                                                      | FACE CC               | NDITIC     | ONS Forest                  | t                                                          |              | 1              | AFTER DRILLING                                                    |   |  |  |
| o DEPTH<br>(ft)                                                                                                                                                                           | SAMPLE TYPE<br>NUMBER | RECOVERY % | BLOW<br>COUNTS<br>(N VALUE) | TESTS                                                      | U.S.C.S.     | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                              |   |  |  |
|                                                                                                                                                                                           | ss                    | 28         | 3-5-5<br>(10)               | MC = 40.4                                                  |              |                | Brown elastic SILT, medium stiff, wet<br>-abundant woody organics |   |  |  |
|                                                                                                                                                                                           | ss                    | 67         | 3-4-5<br>(9)                | MC = 39.3                                                  | - MH         | -              | -                                                                 | - |  |  |
|                                                                                                                                                                                           | ss                    | 100        | 2-3-5<br>(8)                | MC = 42.2<br>LL = 82<br>PL = 50<br>Fines = 99.9<br>PI = 32 |              |                | 15.5'                                                             |   |  |  |
|                                                                                                                                                                                           | ss                    | 100        | 4-4-5<br>(9)                | MC = 43.9                                                  |              |                |                                                                   |   |  |  |
| GENERAL BH / TP / WELL - 8332-1,GPJ - GINT US.GDT - 3/8/23<br>0<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                 | ss                    | 100        | 4-5-7<br>(12)               | MC = 38.4                                                  | _            |                | -becomes gray, massive (no bedding)                               |   |  |  |
| CENERS<br>CENERS<br>20                                                                                                                                                                    |                       |            |                             |                                                            |              | 20.0           | 0 120.0<br>(Continued Next Page)                                  |   |  |  |

| Earth Solutions NW, LLC<br>15365 N.E. 90th Street, Suite 100<br>Redmond, Washington 98052<br>Telephone: 425-449-4704<br>Fax: 425-449-4711 |                                                                       |                             |                                                                                       |              |                | BORING NUMBER B-1<br>PAGE 2 OF 3                                |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------|--------------|----------------|-----------------------------------------------------------------|
| PROJEC                                                                                                                                    |                                                                       | R ES-8332.0                 | 01                                                                                    |              |                | PROJECT NAME _74th Avenue S.E. Property                         |
|                                                                                                                                           |                                                                       |                             |                                                                                       |              |                | GROUND ELEVATION _140 ft                                        |
| DRILLING                                                                                                                                  | G CONTRA                                                              | CTOR Bore                   | etec1, Inc.                                                                           |              |                | LATITUDE <u>47.58819</u> LONGITUDE <u>-122.24008</u>            |
| LOGGED                                                                                                                                    | BY BCS                                                                |                             | CHECKED                                                                               | <b>BY</b> _S | SR             | GROUND WATER LEVEL:                                             |
| NOTES _                                                                                                                                   |                                                                       |                             |                                                                                       |              |                | $\begin{subarray}{cccc} $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$ |
| SURFACI                                                                                                                                   |                                                                       | ONS Fores                   | t                                                                                     |              |                | AFTER DRILLING                                                  |
| 20 DEPTH<br>(ft)<br>50 Mibi E TVDE                                                                                                        | RECOVERY %                                                            | BLOW<br>COUNTS<br>(N VALUE) | TESTS                                                                                 | U.S.C.S.     | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                            |
|                                                                                                                                           | SS 100                                                                | ) 5-6-10<br>(16)            | MC = 33.7                                                                             |              |                | Gray elastic SILT, stiff, wet                                   |
| CEREAL BH/TP/WELL - 332-1.5PJ - GENERAL BH/TP//TP//<br>                                                                                   | SS 100   SS 100 | (17)<br>5-7-9<br>(16)       | MC = 37.3<br>MC = 37.9<br>LL = 74<br>PL = 41<br>Fines = 100.0<br>PI = 33<br>MC = 34.7 | - MH         |                |                                                                 |
| BU 40                                                                                                                                     |                                                                       |                             |                                                                                       |              |                |                                                                 |

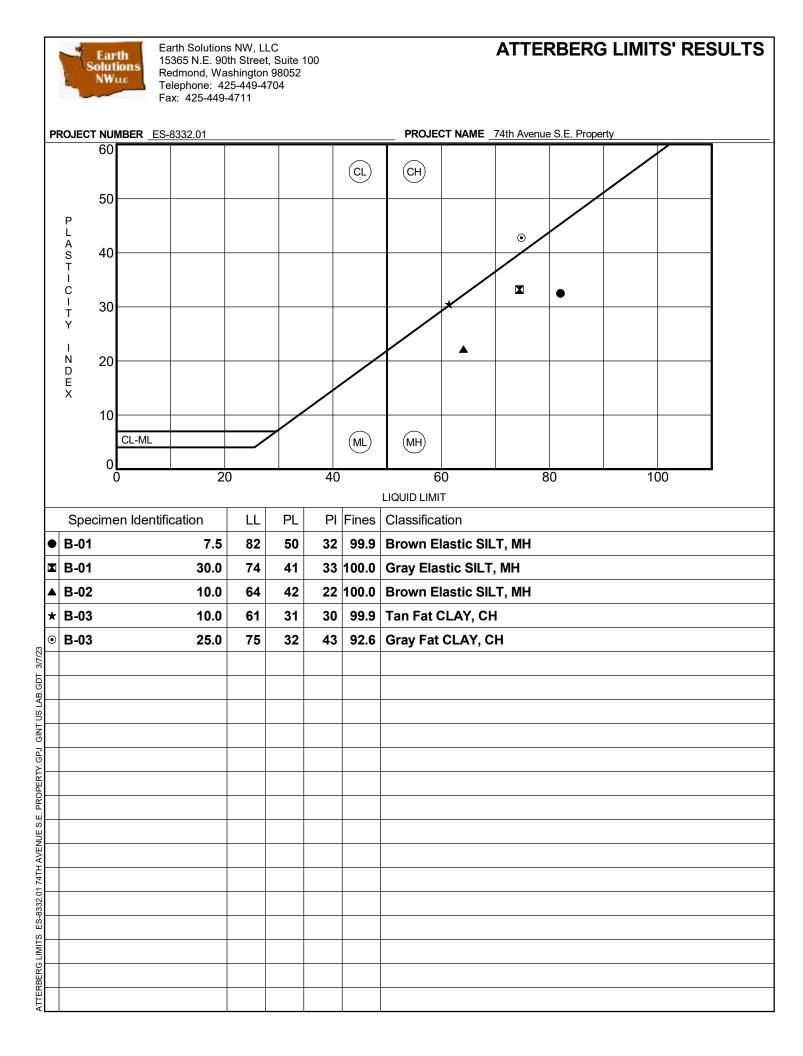
|                | Ear<br>Soluti<br>NW   | ions        | 15365 N.I<br>Redmond<br>Telephon | utions NW, LLC<br>E. 90th Street, Suit<br>I, Washington 9805<br>e: 425-449-4704<br>-449-4711 |              |                | BORING NUMBER B-1<br>PAGE 3 OF 3                                                                                                                                                                                                                                                         |  |
|----------------|-----------------------|-------------|----------------------------------|----------------------------------------------------------------------------------------------|--------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PROJ           | ECT NUN               | <b>IBER</b> | ES-8332.0                        | )1                                                                                           |              |                | PROJECT NAME 74th Avenue S.E. Property                                                                                                                                                                                                                                                   |  |
| DATE           | STARTE                | D _2/2      | 24/23                            |                                                                                              | ED _2/2      | 24/23          | GROUND ELEVATION 140 ft                                                                                                                                                                                                                                                                  |  |
| DRILL          | ING CON               | ITRAC       | TOR Bore                         | etec1, Inc.                                                                                  |              |                | LATITUDE _47.58819 LONGITUDE122.24008                                                                                                                                                                                                                                                    |  |
| LOGG           | ED BY                 | BCS         |                                  | CHECKED                                                                                      | <b>BY</b> _S | SR             | GROUND WATER LEVEL:                                                                                                                                                                                                                                                                      |  |
| NOTE           | s                     |             |                                  |                                                                                              |              |                |                                                                                                                                                                                                                                                                                          |  |
| SURF           | ACE CON               | NDITIC      | NS Forest                        | t                                                                                            |              |                | AFTER DRILLING                                                                                                                                                                                                                                                                           |  |
| ертн<br>б (ft) | SAMPLE TYPE<br>NUMBER | RECOVERY %  | BLOW<br>COUNTS<br>(N VALUE)      | TESTS                                                                                        | U.S.C.S.     | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                                                                                                                                                                                                     |  |
|                | ss                    | 100         | 6-8-10<br>(18)                   | MC = 39.6                                                                                    |              |                | Gray elastic SILT, stiff, wet <i>(continued)</i>                                                                                                                                                                                                                                         |  |
| <br><br>45     |                       |             |                                  |                                                                                              | МН           |                |                                                                                                                                                                                                                                                                                          |  |
|                | ss                    | 100         | 6-10-11<br>(21)                  | MC = 32.5                                                                                    |              | 44             | 3.5 93.5                                                                                                                                                                                                                                                                                 |  |
|                |                       |             |                                  |                                                                                              |              |                | Boring terminated at 46.5 feet below existing grade. No groundwater<br>encountered during drilling. Boring backfilled with bentonite chips.<br>LIMITATIONS: Ground elevation (if listed) is approximate; the test<br>location was not surveyed. Coordinates are approximate and based on |  |
|                |                       |             |                                  |                                                                                              |              |                | the WGS84 datum. Do not rely on this test log as a standalone document. Refer to the text of the geotechnical report for a complete understanding of subsurface conditions.                                                                                                              |  |

|                                                            | Earth Solutions NW, LLC<br>15365 N.E. 90th Street, Suite 100<br>Redmond, Washington 98052<br>Telephone: 425-449-4704<br>Fax: 425-449-4711 |        |            |                             |                                                |          | I              | BORING NUMBER B-2<br>PAGE 1 OF 2                                                         |  |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|-----------------------------|------------------------------------------------|----------|----------------|------------------------------------------------------------------------------------------|--|
| PRO                                                        | JECT                                                                                                                                      |        | IBER       | ES-8332.0                   | 1                                              |          |                | PROJECT NAME 74th Avenue S.E. Property                                                   |  |
|                                                            |                                                                                                                                           |        |            |                             |                                                |          |                | GROUND ELEVATION 154 ft                                                                  |  |
| DRIL                                                       | LING                                                                                                                                      | CON    | TRAC       | TOR Bore                    | tec1, Inc.                                     |          |                | LATITUDE _47.58791 LONGITUDE122.24024                                                    |  |
| LOG                                                        | GED                                                                                                                                       | BY _   | BCS        |                             | CHECKED                                        | BY _5    | SR             | GROUND WATER LEVEL:                                                                      |  |
|                                                            |                                                                                                                                           |        |            |                             |                                                |          |                |                                                                                          |  |
| SURF                                                       | FACE                                                                                                                                      | CON    | IDITIO     | NS Forest                   |                                                |          |                | AFTER DRILLING                                                                           |  |
| o DEPTH<br>(ft)                                            | SAMPI F TYPF                                                                                                                              | NUMBER | RECOVERY % | BLOW<br>COUNTS<br>(N VALUE) | TESTS                                          | U.S.C.S. | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                     |  |
|                                                            |                                                                                                                                           |        |            | 0.05                        |                                                | _        |                | Dark brown to black elastic SILT, medium stiff, wet<br>-trace to minor organics          |  |
| 5                                                          |                                                                                                                                           | SS     | 67         | 2-3-5<br>(8)                | MC = 30.0                                      | _        |                | -leaves, roots, sticks, potential down drag on auger from surface                        |  |
|                                                            | -                                                                                                                                         | SS     | 67         | 4-4-4<br>(8)                | MC = 34.6                                      | _        |                |                                                                                          |  |
|                                                            |                                                                                                                                           | SS     | 78         | 2-2-3<br>(5)                | MC = 45.5                                      |          |                | -becomes soft<br>-becomes tan                                                            |  |
| 10                                                         |                                                                                                                                           |        |            |                             | MC = 41.5                                      | – мн     |                | -disturbed/fractured soil texture and light iron oxide staining extending to roughly 19' |  |
|                                                            |                                                                                                                                           | SS     | 100        | 3-2-4<br>(6)                | LL = 64<br>PL = 42<br>Fines = 100.0<br>PI = 22 | )        |                | -becomes medium stiff                                                                    |  |
| SINT US:GDT - 3/8/23                                       |                                                                                                                                           |        |            |                             |                                                | _        |                |                                                                                          |  |
| ELL - 8332-1.GPJ - (<br>1 1 1                              | -                                                                                                                                         | SS     | 100        | 2-4-7<br>(11)               | MC = 45.3                                      | -        |                |                                                                                          |  |
| GENERAL BH / TP / WELL - 8332-1 GPJ - GNT US. GDT - 3/8/23 | _                                                                                                                                         |        |            |                             |                                                |          | 20             | -becomes gray, massive (no bedding)                                                      |  |

| Earth<br>Solutions<br>NWille                             | Earth Solutions NW, LLC<br>15365 N.E. 90th Street, St<br>Redmond, Washington 98<br>Telephone: 425-449-4704<br>Fax: 425-449-4711 | 052                        | BORING NUMBER B-2<br>PAGE 2 OF 2                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT NUMBER                                           | _ES-8332.01                                                                                                                     |                            | PROJECT NAME _ 74th Avenue S.E. Property                                                                                                                                                                                                                                                                                                                                                                                       |
| DATE STARTED _2/                                         | 24/23 COMPLET                                                                                                                   | ED 2/24/23                 | GROUND ELEVATION 154 ft                                                                                                                                                                                                                                                                                                                                                                                                        |
| DRILLING CONTRA                                          | CTOR Boretec1, Inc.                                                                                                             |                            | LATITUDE _47.58791 LONGITUDE122.24024                                                                                                                                                                                                                                                                                                                                                                                          |
| LOGGED BY BCS                                            | CHECKE                                                                                                                          | BY SSR                     | GROUND WATER LEVEL:                                                                                                                                                                                                                                                                                                                                                                                                            |
| NOTES                                                    |                                                                                                                                 |                            | $\_$ AT TIME OF DRILLING                                                                                                                                                                                                                                                                                                                                                                                                       |
| SURFACE CONDITION                                        | ONS Forest                                                                                                                      |                            | AFTER DRILLING                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0 DEPTH<br>(ft)<br>SAMPLE TYPE<br>NUMBER<br>RECOVERY %   | BLOW<br>COUNTS<br>(N VALUE)<br>(N VALUE)                                                                                        | U.S.C.S.<br>GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                           |
| SS 100                                                   | 4-6-9<br>(15) MC = 41.1                                                                                                         |                            | Gray elastic SILT, medium stiff, wet                                                                                                                                                                                                                                                                                                                                                                                           |
| <br><br>- 25<br><br><br><br><br><br><br><br><br><br><br> | 4-9-10<br>(19) MC = 39.2                                                                                                        | MH                         | -light groundwater seepage<br>-becomes stiff<br>-trace sand                                                                                                                                                                                                                                                                                                                                                                    |
| <br><br>30<br>SS 17                                      | 14-12-9<br>(21) MC = 20.3                                                                                                       |                            | -decreasing moisture content                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                          |                                                                                                                                 | 3                          | 1.5 -trace sand and graver 122.5<br>Boring terminated at 31.5 feet below existing grade. Groundwater                                                                                                                                                                                                                                                                                                                           |
|                                                          |                                                                                                                                 |                            | seepage encountered at 25.0 feet during drilling. Boring backfilled with<br>bentonite chips.<br>LIMITATIONS: Ground elevation (if listed) is approximate; the test<br>location was not surveyed. Coordinates are approximate and based on<br>the WGS84 datum. Do not rely on this test log as a standalone<br>document. Refer to the text of the geotechnical report for a complete<br>understanding of subsurface conditions. |

GENERAL BH / TP / WELL - 8332-1.GPJ - GINT US.GDT - 3/8/23

|                   | Earth Solutions NW, LLC<br>15365 N.E. 90th Street, Suite 100<br>Redmond, Washington 98052<br>Telephone: 425-449-4704<br>Fax: 425-449-4711 |        |            |                             |                                                            |          |                                     | BORING NUMBER B-3<br>PAGE 1 OF 2                                                   |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|-----------------------------|------------------------------------------------------------|----------|-------------------------------------|------------------------------------------------------------------------------------|--|--|
| PRO               | JEC.                                                                                                                                      |        | /IBER      | ES-8332.0                   | 1                                                          |          |                                     | PROJECT NAME _74th Avenue S.E. Property                                            |  |  |
|                   |                                                                                                                                           |        |            |                             |                                                            |          |                                     | GROUND ELEVATION 153 ft                                                            |  |  |
|                   |                                                                                                                                           |        |            |                             |                                                            |          |                                     | LATITUDE _47.58772 LONGITUDE122.24015                                              |  |  |
|                   |                                                                                                                                           |        |            |                             |                                                            |          |                                     | GROUND WATER LEVEL:                                                                |  |  |
|                   |                                                                                                                                           |        |            |                             |                                                            |          |                                     |                                                                                    |  |  |
| SUR               | FAC                                                                                                                                       | E CO   |            | NS Forest                   |                                                            |          |                                     | AFTER DRILLING                                                                     |  |  |
| o DEPTH<br>(ft)   |                                                                                                                                           | NUMBER | RECOVERY % | BLOW<br>COUNTS<br>(N VALUE) | TESTS                                                      | U.S.C.S. | GRAPHIC<br>LOG                      | MATERIAL DESCRIPTION                                                               |  |  |
| -                 |                                                                                                                                           | SS     | 11         | 4-5-5<br>(10)               | MC = 83.6                                                  | _TPSI    |                                     | Dark brown TOPSOIL, leaves, organics                                               |  |  |
| -                 |                                                                                                                                           |        |            | (10)                        |                                                            | _        | <u>12 14</u><br><u>11 14</u><br>4.5 | -limited recovery                                                                  |  |  |
| 5                 |                                                                                                                                           |        |            |                             |                                                            |          |                                     | Tan fat CLAY, soft, wet                                                            |  |  |
| -                 |                                                                                                                                           | SS     | 28         | 3-3-3<br>(6)                | MC = 35.5                                                  | _        |                                     | -disturbed/fractured soil texture and light iron oxide staining extending to 20.5' |  |  |
| -                 |                                                                                                                                           | SS     | 100        | 3-3-6<br>(9)                | MC = 46.2                                                  | _        |                                     | -becomes medium stiff                                                              |  |  |
| <u>   10</u><br>- |                                                                                                                                           | SS     | 100        | 4-5-8<br>(13)               | MC = 41.4<br>LL = 61<br>PL = 31<br>Fines = 99.9<br>PI = 30 |          |                                     |                                                                                    |  |  |
|                   |                                                                                                                                           | SS     | 100        | 4-5-8<br>(13)               | MC = 44.8                                                  | Сн       |                                     |                                                                                    |  |  |
| GENERAL BH        | _                                                                                                                                         |        |            |                             |                                                            |          | 20                                  | 0 133.0                                                                            |  |  |

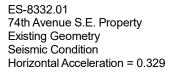

(Continued Next Page)

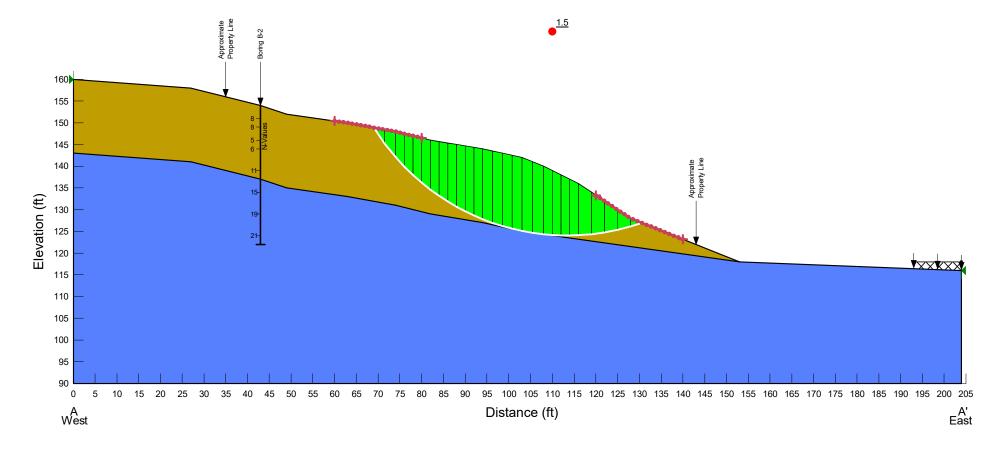
| Earth Solutions N<br>Solutions<br>NWLC<br>Earth Solutions N<br>15365 N.E. 90th<br>Redmond, Wash<br>Telephone: 425-<br>Fax: 425-449-47 | Street, Suite 100<br>ington 98052<br>449-4704          | BORING NUMBER B-3<br>PAGE 2 OF 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PROJECT NUMBER ES-8332.01                                                                                                             |                                                        | PROJECT NAME _74th Avenue S.E. Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| DATE STARTED 2/24/23                                                                                                                  | COMPLETED 2/24/23                                      | GROUND ELEVATION 153 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| DRILLING CONTRACTOR Boretec1, In                                                                                                      | IC.                                                    | LATITUDE 47.58772 LONGITUDE -122.24015                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| LOGGED BY BCS                                                                                                                         | CHECKED BY SSR                                         | GROUND WATER LEVEL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| NOTES                                                                                                                                 |                                                        | $\_$ At time of drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| SURFACE CONDITIONS Forest                                                                                                             |                                                        | AFTER DRILLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| DEPTH<br>(ft)<br>(ft)<br>SAMPLE TYPE<br>NUMBER<br>RECOVERY %<br>BLOW<br>(N VALUE)                                                     | U.S.C.S.<br>LOG<br>LOG                                 | MATERIAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                       |                                                        | Tan fat CLAY, medium stiff, wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| $\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                            | 2 = 40.9                                               | -becomes gray, massive (no bedding)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 25<br>SS 100 3-4-4<br>(8) Fine                                                                                                        | CH<br>= 39.8<br>_ = 75<br>L = 32<br>s = 92.6<br>I = 43 | -groundwater seepage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                       | 30.5                                                   | -sharp contact with underlying unit observed in sample spoon 122.5                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| $  \times$ SS 100 (40) MC                                                                                                             | C = 3.8   SP-                                          | Gray poorly graded SAND with silt and gravel, dense, damp                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                                                                       | 3₩ [∷, ] [] 31.5                                       | 121.5<br>Boring terminated at 31.5 feet below existing grade. Groundwater<br>seepage encountered at 21.0 feet during drilling. Boring backfilled with<br>bentonite chips.<br>LIMITATIONS: Ground elevation (if listed) is approximate; the test<br>location was not surveyed. Coordinates are approximate and based on<br>the WGS84 datum. Do not rely on this test log as a standalone<br>document. Refer to the text of the geotechnical report for a complete<br>understanding of subsurface conditions. |  |

Appendix B

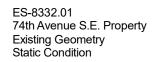
Laboratory Test Results

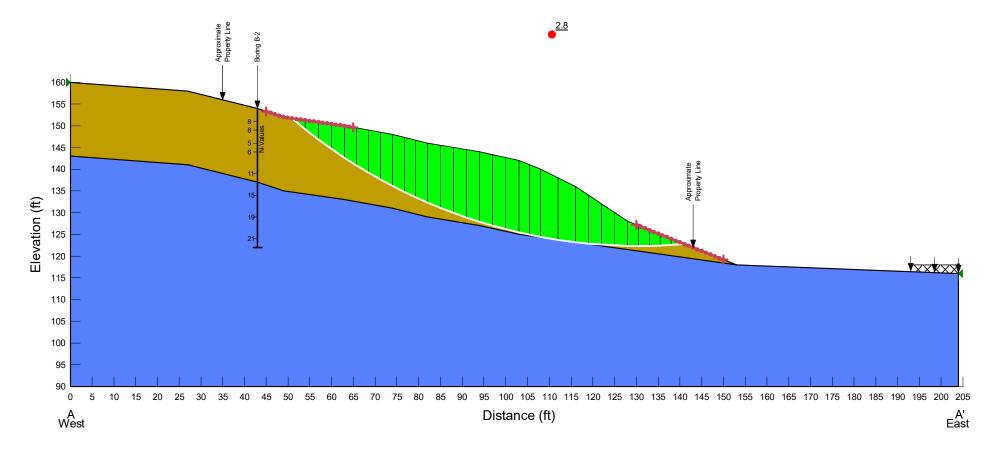
ES-8332.01



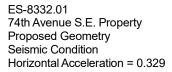


Appendix C

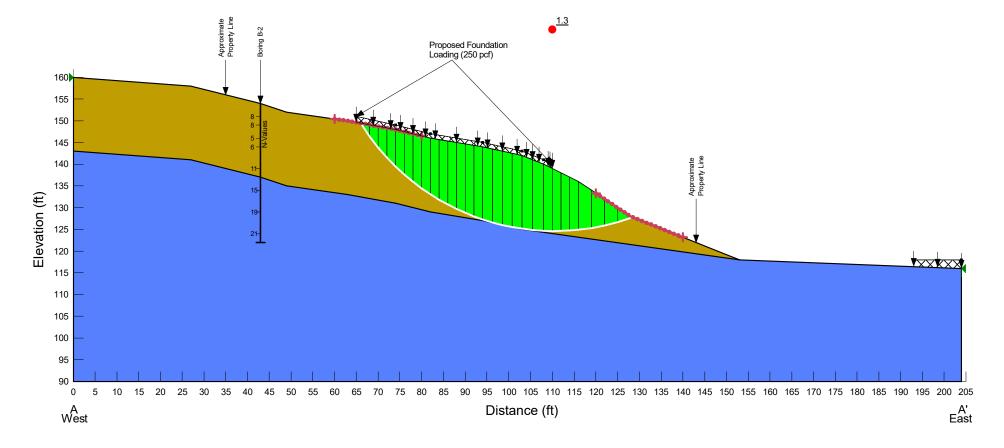
Slope/W Computer Output


ES-8332.01

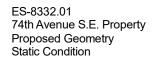

| Color | Name                                                          | Unit<br>Weight<br>(pcf) | Effective<br>Cohesion<br>(psf) | Effective<br>Friction<br>Angle (°) |
|-------|---------------------------------------------------------------|-------------------------|--------------------------------|------------------------------------|
|       | Disturbed Pre-Olympia Fine-Grained Glacial Deposits (Qpogf)   | 110                     | 750                            | 5                                  |
|       | Undisturbed Pre-Olympia Fine-Grained Glacial Deposits (Qpogf) | 115                     | 1,500                          | 7                                  |

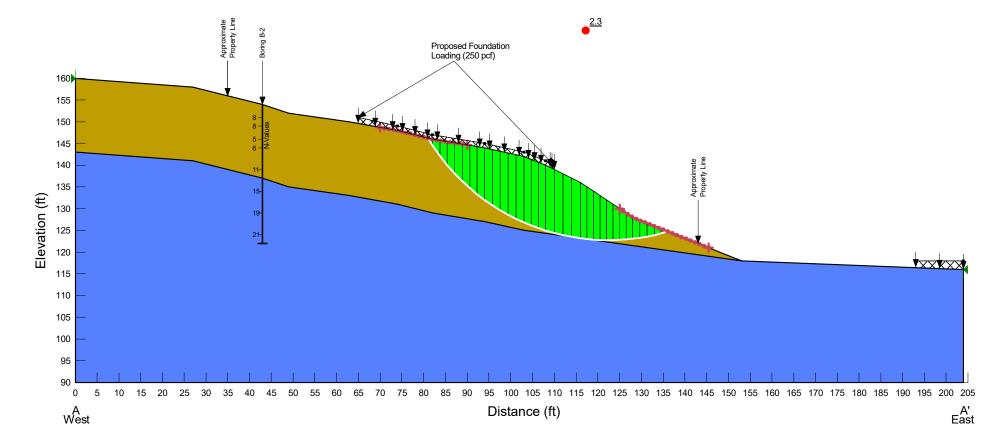






| Color | Name                                                          | Unit<br>Weight<br>(pcf) | Effective<br>Cohesion<br>(psf) | Effective<br>Friction<br>Angle (°) |
|-------|---------------------------------------------------------------|-------------------------|--------------------------------|------------------------------------|
|       | Disturbed Pre-Olympia Fine-Grained Glacial Deposits (Qpogf)   | 110                     | 750                            | 5                                  |
|       | Undisturbed Pre-Olympia Fine-Grained Glacial Deposits (Qpogf) | 115                     | 1,500                          | 7                                  |







| Color | Name                                                          | Unit<br>Weight<br>(pcf) | Effective<br>Cohesion<br>(psf) | Effective<br>Friction<br>Angle (°) |
|-------|---------------------------------------------------------------|-------------------------|--------------------------------|------------------------------------|
|       | Disturbed Pre-Olympia Fine-Grained Glacial Deposits (Qpogf)   | 110                     | 750                            | 5                                  |
|       | Undisturbed Pre-Olympia Fine-Grained Glacial Deposits (Qpogf) | 115                     | 1,500                          | 7                                  |





| Color | Name                                                          | Unit<br>Weight<br>(pcf) | Effective<br>Cohesion<br>(psf) | Effective<br>Friction<br>Angle (°) |
|-------|---------------------------------------------------------------|-------------------------|--------------------------------|------------------------------------|
|       | Disturbed Pre-Olympia Fine-Grained Glacial Deposits (Qpogf)   | 110                     | 750                            | 5                                  |
|       | Undisturbed Pre-Olympia Fine-Grained Glacial Deposits (Qpogf) | 115                     | 1,500                          | 7                                  |





# Existing, Seismic

Report generated using GeoStudio 2021.3. Copyright © 1991-2021 GEOSLOPE International Ltd.

## **File Information**

File Version: 11.02 Title: 74th Avenue S.E. Property Created By: Brian Snow Last Edited By: Brian Snow Revision Number: 45 Date: 03/31/2023 Time: 11:03:24 AM Tool Version: 11.2.0.22838 File Name: 8332.01 Slope Stability.gsz Directory: G:\# ESNW\# INBOX\00 - Project Files\00 - Geotechnical\8332.01 - (SLOPE) 74th Avenue S.E. Property\SlopeW\ Last Solved Date: 03/31/2023 Last Solved Time: 11:03:35 AM

# **Project Settings**

Unit System: U.S. Customary Units

## **Analysis Settings**

**Existing, Seismic** Kind: SLOPE/W Analysis Type: Morgenstern-Price Settings Side Function Interslice force function option: Half-Sine PWP Conditions from: (none) Unit Weight of Water: 62.430189 pcf Slip Surface Direction of movement: Left to Right Use Passive Mode: No Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1 Optimize Critical Slip Surface Location: No Tension Crack Option: (none) Distribution F of S Calculation Option: Constant Advanced **Geometry Settings** Minimum Slip Surface Depth: 5 ft Number of Slices: 30

Factor of Safety Convergence Settings Maximum Number of Iterations: 100 Tolerable difference in F of S: 0.001 Under-Relaxation Criteria Initial Rate: 1 Minimum Rate: 0.1 Rate Reduction Factor: 0.65 Reduction Frequency (iterations): 50 Solution Settings Search Method: Root Finder Tolerable difference between starting and converged F of S: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

#### **Materials**

Undisturbed Pre-Olympia Fine-Grained Glacial Deposits (Qpogf)

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 115 pcf Effective Cohesion: 1,500 psf Effective Friction Angle: 7 ° Phi-B: 0 °

Disturbed Pre-Olympia Fine-Grained Glacial Deposits (Qpogf)

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 110 pcf Effective Cohesion: 750 psf Effective Friction Angle: 5 ° Phi-B: 0 °

## **Slip Surface Entry and Exit**

Left Type: Range Left-Zone Left Coordinate: (60, 150.42857) ft Left-Zone Right Coordinate: (80, 146.5) ft Left-Zone Increment: 20 Right Type: Range Right-Zone Left Coordinate: (120, 133.33333) ft Right-Zone Right Coordinate: (140, 123.2) ft Right-Zone Increment: 20 Radius Increments: 4

## **Slip Surface Limits**

Left Coordinate: (0, 160) ft Right Coordinate: (204, 116) ft

# **Seismic Coefficients**

Horz Seismic Coef.: 0.329

# Surcharge Loads

#### Surcharge Load 1

Surcharge (Unit Weight): 250 pcf Direction: Vertical

#### Coordinates

| Х      | Y      |
|--------|--------|
| 193 ft | 118 ft |
| 204 ft | 118 ft |

## Geometry

Name: Existing Geometry

#### **Settings**

View: 2D Element Thickness: 1 ft

#### Points

|          | Х      | Y      |
|----------|--------|--------|
| Point 1  | 0 ft   | 160 ft |
| Point 2  | 27 ft  | 158 ft |
| Point 3  | 35 ft  | 156 ft |
| Point 4  | 43 ft  | 154 ft |
| Point 5  | 49 ft  | 152 ft |
| Point 6  | 63 ft  | 150 ft |
| Point 7  | 74 ft  | 148 ft |
| Point 8  | 82 ft  | 146 ft |
| Point 9  | 94 ft  | 144 ft |
| Point 10 | 103 ft | 142 ft |
| Point 11 | 108 ft | 140 ft |
| Point 12 | 112 ft | 138 ft |
| Point 13 | 116 ft | 136 ft |
| Point 14 | 119 ft | 134 ft |
| Point 15 | 122 ft | 132 ft |
| Point 16 | 125 ft | 130 ft |
| Point 17 | 128 ft | 128 ft |
| Point 18 | 133 ft | 126 ft |
| Point 19 | 138 ft | 124 ft |
| Point 20 | 143 ft | 122 ft |
| Point 21 | 148 ft | 120 ft |
| Point 22 | 153 ft | 118 ft |

| Point 23 | 204 ft | 116 ft |
|----------|--------|--------|
| Point 24 | 204 ft | 90 ft  |
| Point 25 | 0 ft   | 90 ft  |
| Point 26 | 0 ft   | 143 ft |
| Point 27 | 27 ft  | 141 ft |
| Point 28 | 35 ft  | 139 ft |
| Point 29 | 43 ft  | 137 ft |
| Point 30 | 49 ft  | 135 ft |
| Point 31 | 63 ft  | 133 ft |
| Point 32 | 74 ft  | 131 ft |
| Point 33 | 82 ft  | 129 ft |
| Point 34 | 94 ft  | 127 ft |
| Point 35 | 103 ft | 125 ft |

#### Regions

|             | Material                                                                         | Points                                                                                 | Area         |
|-------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------|
| Region<br>1 | Disturbed<br>Pre-Olympia<br>Fine-<br>Grained<br>Glacial<br>Deposits<br>(Qpogf)   | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,35,34,33,32,31,30,29,28,27,26 | 2,144<br>ft² |
| Region<br>2 | Undisturbed<br>Pre-Olympia<br>Fine-<br>Grained<br>Glacial<br>Deposits<br>(Qpogf) | 26,25,24,23,22,35,34,33,32,31,30,29,28,27                                              | 7,594<br>ft² |

## **Slip Results**

Slip Surfaces Analysed: 1896 of 2205 converged

### **Current Slip Surface**

Slip Surface: 1,003 Factor of Safety: 1.5 Volume: 685.60713 ft<sup>3</sup> Weight: 75,416.785 lbf Resisting Moment: 3,059,739.4 lbf·ft Activating Moment: 2,097,770 lbf·ft Resisting Force: 51,705.282 lbf Activating Force: 35,468.381 lbf Slip Rank: 1 of 2,205 slip surfaces Exit: (130.5828, 126.96688) ft Entry: (69.048338, 148.9003) ft Radius: 52.077183 ft Center: (113.43371, 176.13945) ft

|             | Х               | Y               | PWP      | Base<br>Normal<br>Stress | Frictional<br>Strength | Cohesive<br>Strength | Suction<br>Strength | Base Material                                                     |
|-------------|-----------------|-----------------|----------|--------------------------|------------------------|----------------------|---------------------|-------------------------------------------------------------------|
| Slice<br>1  | 70.286253<br>ft | 147.0633<br>ft  | 0<br>psf | -430.66839<br>psf        | -37.678602<br>psf      | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>2  | 72.762084<br>ft | 143.67541<br>ft | 0<br>psf | 35.147506<br>psf         | 3.0750083<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>3  | 75 ft           | 141.02985<br>ft | 0<br>psf | 291.72716<br>psf         | 25.52282<br>psf        | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>4  | 77 ft           | 138.95535<br>ft | 0<br>psf | 444.17025<br>psf         | 38.859861<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>5  | 79 ft           | 137.09365<br>ft | 0<br>psf | 558.42876<br>psf         | 48.856186<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>6  | 81 ft           | 135.41535<br>ft | 0<br>psf | 648.37942<br>psf         | 56.725849<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>7  | 83 ft           | 133.89844<br>ft | 0<br>psf | 728.07727<br>psf         | 63.698507<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>8  | 85 ft           | 132.52602<br>ft | 0<br>psf | 803.09613<br>psf         | 70.261807<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>9  | 87 ft           | 131.28475<br>ft | 0<br>psf | 872.73248<br>psf         | 76.354198<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>10 | 89 ft           | 130.16398<br>ft | 0<br>psf | 940.74029<br>psf         | 82.304111<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>11 | 91 ft           | 129.15506<br>ft | 0<br>psf | 1,010.0829<br>psf        | 88.370804<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>12 | 93 ft           | 128.25089<br>ft | 0<br>psf | 1,083.1343<br>psf        | 94.761972<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>13 | 95.125 ft       | 127.40159<br>ft | 0<br>psf | 1,162.9612<br>psf        | 101.74592<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>14 | 97.375 ft       | 126.61419<br>ft | 0<br>psf | 1,252.3726<br>psf        | 109.56841<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>15 | 99.625 ft       | 125.93994<br>ft | 0<br>psf | 1,351.0598<br>psf        | 118.20242<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>16 | 101.875 ft      | 125.37433<br>ft | 0<br>psf | 1,458.5848<br>psf        | 127.60963<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice       |                 | 124.89416       | 0        | 1,563.3912               | 136.77901              |                      |                     | Disturbed Pre-Olympia                                             |

| 17          | 104.25 ft      | ft              | psf      | psf               | psf              | 750 psf | 0 psf | Fine-Grained Glacial<br>Deposits (Qpogf)                          |
|-------------|----------------|-----------------|----------|-------------------|------------------|---------|-------|-------------------------------------------------------------------|
| Slice<br>18 | 106.75 ft      | 124.50834<br>ft | 0<br>psf | 1,659.0011<br>psf | 145.14379<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>19 | 109 ft         | 124.26106<br>ft | 0<br>psf | 1,729.5727<br>psf | 151.31801<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>20 | 111 ft         | 124.1288<br>ft  | 0<br>psf | 1,767.7463<br>psf | 154.65776<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>21 | 113 ft         | 124.07368<br>ft | 0<br>psf | 1,783.61<br>psf   | 156.04566<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>22 | 115 ft         | 124.09545<br>ft | 0<br>psf | 1,769.854<br>psf  | 154.84216<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>23 | 117.5 ft       | 124.24307<br>ft | 0<br>psf | 1,673.4358<br>psf | 146.40666<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>24 | 120.5 ft       | 124.56612<br>ft | 0<br>psf | 1,449.8882<br>psf | 126.84878<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>25 | 123.5 ft       | 125.0673<br>ft  | 0<br>psf | 1,126.6719<br>psf | 98.571021<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>26 | 126.5 ft       | 125.75192<br>ft | 0<br>psf | 722.80863<br>psf  | 63.237561<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>27 | 129.2914<br>ft | 126.55389<br>ft | 0<br>psf | 342.80099<br>psf  | 29.9912<br>psf   | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |

# Existing, Static

Report generated using GeoStudio 2021.3. Copyright © 1991-2021 GEOSLOPE International Ltd.

# **File Information**

File Version: 11.02 Title: 74th Avenue S.E. Property Created By: Brian Snow Last Edited By: Brian Snow Revision Number: 45 Date: 03/31/2023 Time: 11:03:24 AM Tool Version: 11.2.0.22838 File Name: 8332.01 Slope Stability.gsz Directory: G:\# ESNW\# INBOX\00 - Project Files\00 - Geotechnical\8332.01 - (SLOPE) 74th Avenue S.E. Property\SlopeW\ Last Solved Date: 03/31/2023 Last Solved Time: 11:03:34 AM

# **Project Settings**

Unit System: U.S. Customary Units

# **Analysis Settings**

**Existing, Static** Kind: SLOPE/W Analysis Type: Morgenstern-Price Settings Side Function Interslice force function option: Half-Sine PWP Conditions from: (none) Unit Weight of Water: 62.430189 pcf Slip Surface Direction of movement: Left to Right Use Passive Mode: No Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1 Optimize Critical Slip Surface Location: No Tension Crack Option: (none) Distribution F of S Calculation Option: Constant Advanced **Geometry Settings** Minimum Slip Surface Depth: 5 ft Number of Slices: 30

Factor of Safety Convergence Settings Maximum Number of Iterations: 100 Tolerable difference in F of S: 0.001 Under-Relaxation Criteria Initial Rate: 1 Minimum Rate: 0.1 Rate Reduction Factor: 0.65 Reduction Frequency (iterations): 50 Solution Settings Search Method: Root Finder Tolerable difference between starting and converged F of S: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

#### **Materials**

Undisturbed Pre-Olympia Fine-Grained Glacial Deposits (Qpogf)

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 115 pcf Effective Cohesion: 1,500 psf Effective Friction Angle: 7 ° Phi-B: 0 °

Disturbed Pre-Olympia Fine-Grained Glacial Deposits (Qpogf)

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 110 pcf Effective Cohesion: 750 psf Effective Friction Angle: 5 ° Phi-B: 0 °

## **Slip Surface Entry and Exit**

Left Type: Range Left-Zone Left Coordinate: (45, 153.3333) ft Left-Zone Right Coordinate: (65, 149.63636) ft Left-Zone Increment: 20 Right Type: Range Right-Zone Left Coordinate: (130, 127.2) ft Right-Zone Right Coordinate: (150, 119.2) ft Right-Zone Increment: 20 Radius Increments: 4

## **Slip Surface Limits**

Left Coordinate: (0, 160) ft Right Coordinate: (204, 116) ft

# Surcharge Loads

Surcharge Load 1

Surcharge (Unit Weight): 250 pcf Direction: Vertical

#### Coordinates

| Х      | Y      |
|--------|--------|
| 193 ft | 118 ft |
| 204 ft | 118 ft |

## Geometry

Name: Existing Geometry

#### Settings

View: 2D Element Thickness: 1 ft

#### Points

|          | Х      | Y      |
|----------|--------|--------|
| Point 1  | 0 ft   | 160 ft |
| Point 2  | 27 ft  | 158 ft |
| Point 3  | 35 ft  | 156 ft |
| Point 4  | 43 ft  | 154 ft |
| Point 5  | 49 ft  | 152 ft |
| Point 6  | 63 ft  | 150 ft |
| Point 7  | 74 ft  | 148 ft |
| Point 8  | 82 ft  | 146 ft |
| Point 9  | 94 ft  | 144 ft |
| Point 10 | 103 ft | 142 ft |
| Point 11 | 108 ft | 140 ft |
| Point 12 | 112 ft | 138 ft |
| Point 13 | 116 ft | 136 ft |
| Point 14 | 119 ft | 134 ft |
| Point 15 | 122 ft | 132 ft |
| Point 16 | 125 ft | 130 ft |
| Point 17 | 128 ft | 128 ft |
| Point 18 | 133 ft | 126 ft |
| Point 19 | 138 ft | 124 ft |
| Point 20 | 143 ft | 122 ft |
| Point 21 | 148 ft | 120 ft |
| Point 22 | 153 ft | 118 ft |
| Point 23 | 204 ft | 116 ft |
| Point 24 | 204 ft | 90 ft  |
| Point 25 | 0 ft   | 90 ft  |
| Point 26 | 0 ft   | 143 ft |

| Point 27 | 27 ft  | 141 ft |
|----------|--------|--------|
| Point 28 | 35 ft  | 139 ft |
| Point 29 | 43 ft  | 137 ft |
| Point 30 | 49 ft  | 135 ft |
| Point 31 | 63 ft  | 133 ft |
| Point 32 | 74 ft  | 131 ft |
| Point 33 | 82 ft  | 129 ft |
| Point 34 | 94 ft  | 127 ft |
| Point 35 | 103 ft | 125 ft |

#### Regions

|             | Material                                                                         | Points                                                                                 | Area         |
|-------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------|
| Region<br>1 | Disturbed<br>Pre-Olympia<br>Fine-<br>Grained<br>Glacial<br>Deposits<br>(Qpogf)   | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,35,34,33,32,31,30,29,28,27,26 | 2,144<br>ft² |
| Region<br>2 | Undisturbed<br>Pre-Olympia<br>Fine-<br>Grained<br>Glacial<br>Deposits<br>(Qpogf) | 26,25,24,23,22,35,34,33,32,31,30,29,28,27                                              | 7,594<br>ft² |

## **Slip Results**

Slip Surfaces Analysed: 2155 of 2205 converged

## **Current Slip Surface**

Slip Surface: 687 Factor of Safety: 2.8 Volume: 926.22126 ft<sup>3</sup> Weight: 101,884.34 lbf Resisting Moment: 10,000,387 lbf·ft Activating Moment: 3,603,357.8 lbf·ft Resisting Force: 75,743.065 lbf Activating Force: 27,292.725 lbf Slip Rank: 1 of 2,205 slip surfaces Exit: (141, 122.8) ft Entry: (50.881913, 151.73116) ft Radius: 122.73745 ft Center: (130.55725, 245.0924) ft

#### **Slip Slices**

|  | X | Y | PWP | Base<br>Normal | Frictional<br>Strength | Cohesive<br>Strength | Suction<br>Strength | Base Material |
|--|---|---|-----|----------------|------------------------|----------------------|---------------------|---------------|
|--|---|---|-----|----------------|------------------------|----------------------|---------------------|---------------|

|             |                 |                 |          | Stress            |                   |         |       |                                                                   |
|-------------|-----------------|-----------------|----------|-------------------|-------------------|---------|-------|-------------------------------------------------------------------|
| Slice<br>1  | 52.396674<br>ft | 150.47979<br>ft | 0<br>psf | -99.494923<br>psf | -8.7046778<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>2  | 55.426196<br>ft | 148.05562<br>ft | 0<br>psf | 134.70046<br>psf  | 11.784763<br>psf  | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>3  | 58.455717<br>ft | 145.78305<br>ft | 0<br>psf | 343.68152<br>psf  | 30.068237<br>psf  | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>4  | 61.485239<br>ft | 143.65187<br>ft | 0<br>psf | 531.37392<br>psf  | 46.489194<br>psf  | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>5  | 64.375 ft       | 141.73997<br>ft | 0<br>psf | 688.42311<br>psf  | 60.229217<br>psf  | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>6  | 67.125 ft       | 140.02932<br>ft | 0<br>psf | 818.88173<br>psf  | 71.642868<br>psf  | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>7  | 69.875 ft       | 138.41699<br>ft | 0<br>psf | 938.46093<br>psf  | 82.104692<br>psf  | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>8  | 72.625 ft       | 136.89858<br>ft | 0<br>psf | 1,048.5085<br>psf | 91.732606<br>psf  | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>9  | 75.333333<br>ft | 135.49052<br>ft | 0<br>psf | 1,139.532<br>psf  | 99.696136<br>psf  | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>10 | 78 ft           | 134.18685<br>ft | 0<br>psf | 1,212.6291<br>psf | 106.0913<br>psf   | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>11 | 80.666667<br>ft | 132.96175<br>ft | 0<br>psf | 1,279.2463<br>psf | 111.91955<br>psf  | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>12 | 83.5 ft         | 131.74577<br>ft | 0<br>psf | 1,355.8094<br>psf | 118.61795<br>psf  | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>13 | 86.5 ft         | 130.54609<br>ft | 0<br>psf | 1,442.0244<br>psf | 126.16079<br>psf  | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>14 | 89.5 ft         | 129.43666<br>ft | 0<br>psf | 1,521.2564<br>psf | 133.09269<br>psf  | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>15 | 92.5 ft         | 128.4149<br>ft  | 0<br>psf | 1,593.603<br>psf  | 139.4222<br>psf   | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>16 | 95.5 ft         | 127.47854<br>ft | 0<br>psf | 1,650.3558<br>psf | 144.38743<br>psf  | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>17 | 98.5 ft         | 126.62553<br>ft | 0<br>psf | 1,691.1088<br>psf | 147.95285<br>psf  | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice       | 101.5 ft        | 125.85409       | 0        | 1,724.0313        | 150.8332          | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial                     |

| 18          |           | ft              | psf      | psf               | psf              |         |       | Deposits (Qpogf)                                                  |
|-------------|-----------|-----------------|----------|-------------------|------------------|---------|-------|-------------------------------------------------------------------|
| Slice<br>19 | 104.25 ft | 125.21424<br>ft | 0<br>psf | 1,723.7725<br>psf | 150.81055<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>20 | 106.75 ft | 124.69276<br>ft | 0<br>psf | 1,690.7886<br>psf | 147.92483<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>21 | 110 ft    | 124.10576<br>ft | 0<br>psf | 1,614.6804<br>psf | 141.26623<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>22 | 114 ft    | 123.49361<br>ft | 0<br>psf | 1,487.9464<br>psf | 130.17844<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>23 | 117.5 ft  | 123.06079<br>ft | 0<br>psf | 1,333.6105<br>psf | 116.6758<br>psf  | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>24 | 120.5 ft  | 122.77695<br>ft | 0<br>psf | 1,156.0702<br>psf | 101.14304<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>25 | 123.5 ft  | 122.56722<br>ft | 0<br>psf | 965.98178<br>psf  | 84.512455<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>26 | 126.5 ft  | 122.43121<br>ft | 0<br>psf | 763.73446<br>psf  | 66.818107<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>27 | 129.25 ft | 122.36828<br>ft | 0<br>psf | 605.23386<br>psf  | 52.951101<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>28 | 131.75 ft | 122.36711<br>ft | 0<br>psf | 493.16586<br>psf  | 43.146422<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>29 | 134.25 ft | 122.41689<br>ft | 0<br>psf | 374.23118<br>psf  | 32.740986<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>30 | 136.75 ft | 122.51767<br>ft | 0<br>psf | 248.87721<br>psf  | 21.773935<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>31 | 139.5 ft  | 122.69041<br>ft | 0<br>psf | 103.86513<br>psf  | 9.0870211<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |

# Proposed, Seismic

Report generated using GeoStudio 2021.3. Copyright © 1991-2021 GEOSLOPE International Ltd.

## **File Information**

File Version: 11.02 Title: 74th Avenue S.E. Property Created By: Brian Snow Last Edited By: Brian Snow Revision Number: 45 Date: 03/31/2023 Time: 11:03:24 AM Tool Version: 11.2.0.22838 File Name: 8332.01 Slope Stability.gsz Directory: G:\# ESNW\# INBOX\00 - Project Files\00 - Geotechnical\8332.01 - (SLOPE) 74th Avenue S.E. Property\SlopeW\ Last Solved Date: 03/31/2023 Last Solved Time: 11:03:36 AM

## **Project Settings**

Unit System: U.S. Customary Units

## **Analysis Settings**

**Proposed**, Seismic Kind: SLOPE/W Analysis Type: Morgenstern-Price Settings Side Function Interslice force function option: Half-Sine PWP Conditions from: (none) Unit Weight of Water: 62.430189 pcf Slip Surface Direction of movement: Left to Right Use Passive Mode: No Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1 Optimize Critical Slip Surface Location: No Tension Crack Option: (none) Distribution F of S Calculation Option: Constant Advanced **Geometry Settings** Minimum Slip Surface Depth: 5 ft Number of Slices: 30

Factor of Safety Convergence Settings Maximum Number of Iterations: 100 Tolerable difference in F of S: 0.001 Under-Relaxation Criteria Initial Rate: 1 Minimum Rate: 0.1 Rate Reduction Factor: 0.65 Reduction Frequency (iterations): 50 Solution Settings Search Method: Root Finder Tolerable difference between starting and converged F of S: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

#### **Materials**

Undisturbed Pre-Olympia Fine-Grained Glacial Deposits (Qpogf)

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 115 pcf Effective Cohesion: 1,500 psf Effective Friction Angle: 7 ° Phi-B: 0 °

Disturbed Pre-Olympia Fine-Grained Glacial Deposits (Qpogf)

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 110 pcf Effective Cohesion: 750 psf Effective Friction Angle: 5 ° Phi-B: 0 °

## **Slip Surface Entry and Exit**

Left Type: Range Left-Zone Left Coordinate: (60, 150.42857) ft Left-Zone Right Coordinate: (80, 146.5) ft Left-Zone Increment: 20 Right Type: Range Right-Zone Left Coordinate: (120, 133.33333) ft Right-Zone Right Coordinate: (140, 123.2) ft Right-Zone Increment: 20 Radius Increments: 4

## **Slip Surface Limits**

Left Coordinate: (0, 160) ft Right Coordinate: (204, 116) ft

# **Seismic Coefficients**

Horz Seismic Coef.: 0.329

# Surcharge Loads

### Surcharge Load 1

Surcharge (Unit Weight): 250 pcf Direction: Vertical

#### Coordinates

| Х      | Y      |
|--------|--------|
| 193 ft | 118 ft |
| 204 ft | 118 ft |

#### Surcharge Load 2

Surcharge (Unit Weight): 250 pcf Direction: Vertical

#### Coordinates

| Х      | Y      |
|--------|--------|
| 65 ft  | 151 ft |
| 74 ft  | 149 ft |
| 82 ft  | 147 ft |
| 94 ft  | 145 ft |
| 103 ft | 143 ft |
| 108 ft | 141 ft |
| 110 ft | 140 ft |

# Geometry

Name: Proposed Geometry

#### Settings

View: 2D Element Thickness: 1 ft

#### Points

|         | Х     | Y      |
|---------|-------|--------|
| Point 1 | 0 ft  | 160 ft |
| Point 2 | 27 ft | 158 ft |
| Point 3 | 35 ft | 156 ft |
| Point 4 | 43 ft | 154 ft |
| Point 5 | 49 ft | 152 ft |
| Point 6 | 63 ft | 150 ft |
| Point 7 | 74 ft | 148 ft |
|         |       |        |

|          | 1      | 1      |
|----------|--------|--------|
| Point 8  | 82 ft  | 146 ft |
| Point 9  | 94 ft  | 144 ft |
| Point 10 | 103 ft | 142 ft |
| Point 11 | 108 ft | 140 ft |
| Point 12 | 112 ft | 138 ft |
| Point 13 | 116 ft | 136 ft |
| Point 14 | 119 ft | 134 ft |
| Point 15 | 122 ft | 132 ft |
| Point 16 | 125 ft | 130 ft |
| Point 17 | 128 ft | 128 ft |
| Point 18 | 133 ft | 126 ft |
| Point 19 | 138 ft | 124 ft |
| Point 20 | 143 ft | 122 ft |
| Point 21 | 148 ft | 120 ft |
| Point 22 | 153 ft | 118 ft |
| Point 23 | 204 ft | 116 ft |
| Point 24 | 204 ft | 90 ft  |
| Point 25 | 0 ft   | 90 ft  |
| Point 26 | 0 ft   | 143 ft |
| Point 27 | 27 ft  | 141 ft |
| Point 28 | 35 ft  | 139 ft |
| Point 29 | 43 ft  | 137 ft |
| Point 30 | 49 ft  | 135 ft |
| Point 31 | 63 ft  | 133 ft |
| Point 32 | 74 ft  | 131 ft |
| Point 33 | 82 ft  | 129 ft |
| Point 34 | 94 ft  | 127 ft |
| Point 35 | 103 ft | 125 ft |

## Regions

|             | Material                                                                         | Points                                                                                 | Area         |
|-------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------|
| Region<br>1 | Disturbed<br>Pre-Olympia<br>Fine-<br>Grained<br>Glacial<br>Deposits<br>(Qpogf)   | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,35,34,33,32,31,30,29,28,27,26 | 2,144<br>ft² |
| Region<br>2 | Undisturbed<br>Pre-Olympia<br>Fine-<br>Grained<br>Glacial<br>Deposits<br>(Qpogf) | 26,25,24,23,22,35,34,33,32,31,30,29,28,27                                              | 7,594<br>ft² |

# **Slip Results**

Slip Surfaces Analysed: 1937 of 2205 converged

## **Current Slip Surface**

Slip Surface: 678 Factor of Safety: 1.3 Volume: 715.71506 ft<sup>3</sup> Weight: 78,728.657 lbf Resisting Moment: 3,177,999.6 lbf·ft Activating Moment: 2,402,315.1 lbf·ft Resisting Force: 53,557.381 lbf Activating Force: 40,490.521 lbf Slip Rank: 1 of 2,205 slip surfaces Exit: (128.49008, 127.80397) ft Entry: (66.038367, 149.44757) ft Radius: 52.310352 ft Center: (110.54225, 176.93897) ft

#### **Slip Slices**

|             | X               | Y               | PWP      | Base<br>Normal<br>Stress | Frictional<br>Strength | Cohesive<br>Strength | Suction<br>Strength | Base Material                                                     |
|-------------|-----------------|-----------------|----------|--------------------------|------------------------|----------------------|---------------------|-------------------------------------------------------------------|
| Slice<br>1  | 67.033571<br>ft | 147.95371<br>ft | 0<br>psf | -285.44827<br>psf        | -24.973488<br>psf      | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>2  | 69.023979<br>ft | 145.15965<br>ft | 0<br>psf | 86.020426<br>psf         | 7.5258121<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>3  | 71.014388<br>ft | 142.71019<br>ft | 0<br>psf | 334.11688<br>psf         | 29.23144<br>psf        | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>4  | 73.004796<br>ft | 140.53473<br>ft | 0<br>psf | 510.91364<br>psf         | 44.699152<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>5  | 75 ft           | 138.58193<br>ft | 0<br>psf | 646.32056<br>psf         | 56.545722<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>6  | 77 ft           | 136.81926<br>ft | 0<br>psf | 756.20851<br>psf         | 66.159672<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>7  | 79 ft           | 135.22701<br>ft | 0<br>psf | 847.79136<br>psf         | 74.172133<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>8  | 81 ft           | 133.78622<br>ft | 0<br>psf | 927.93026<br>psf         | 81.183379<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>9  | 83 ft           | 132.4821<br>ft  | 0<br>psf | 1,006.935<br>psf         | 88.095395<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>10 | 85 ft           | 131.30287<br>ft | 0<br>psf | 1,088.3072<br>psf        | 95.21454<br>psf        | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>11 | 87 ft           | 130.23906<br>ft | 0<br>psf | 1,169.71<br>psf          | 102.33637<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial                     |

|             |            |                 |          |                   |                  |         |       | Deposits (Qpogf)                                                  |
|-------------|------------|-----------------|----------|-------------------|------------------|---------|-------|-------------------------------------------------------------------|
| Slice<br>12 | 89 ft      | 129.28291<br>ft | 0<br>psf | 1,253.6878<br>psf | 109.68347<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>13 | 91 ft      | 128.42803<br>ft | 0<br>psf | 1,342.151<br>psf  | 117.423<br>psf   | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>14 | 93 ft      | 127.66914<br>ft | 0<br>psf | 1,436.4521<br>psf | 125.67328<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>15 | 95.125 ft  | 126.96602<br>ft | 0<br>psf | 1,539.5842<br>psf | 134.69616<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>16 | 97.375 ft  | 126.32627<br>ft | 0<br>psf | 1,652.8755<br>psf | 144.60787<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>17 | 99.625 ft  | 125.79346<br>ft | 0<br>psf | 1,773.0405<br>psf | 155.12094<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>18 | 101.875 ft | 125.36426<br>ft | 0<br>psf | 1,897.3822<br>psf | 165.99943<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>19 | 104.25 ft  | 125.0237<br>ft  | 0<br>psf | 2,010.1031<br>psf | 175.86123<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>20 | 106.75 ft  | 124.78131<br>ft | 0<br>psf | 2,100.0658<br>psf | 183.73195<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>21 | 109 ft     | 124.66093<br>ft | 0<br>psf | 2,151.7229<br>psf | 188.25136<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>22 | 111 ft     | 124.64018<br>ft | 0<br>psf | 1,899.052<br>psf  | 166.14552<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>23 | 113 ft     | 124.69598<br>ft | 0<br>psf | 1,871.0434<br>psf | 163.69509<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>24 | 115 ft     | 124.82856<br>ft | 0<br>psf | 1,806.4951<br>psf | 158.04784<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>25 | 117.5 ft   | 125.1155<br>ft  | 0<br>psf | 1,639.9574<br>psf | 143.47768<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>26 | 120.5 ft   | 125.60787<br>ft | 0<br>psf | 1,334.8549<br>psf | 116.78467<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>27 | 123.5 ft   | 126.28255<br>ft | 0<br>psf | 946.83138<br>psf  | 82.837012<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>28 | 126.5 ft   | 127.14698<br>ft | 0<br>psf | 503.51565<br>psf  | 44.051911<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice       | 128.24504  | 127.71584       | 0        | 242.89666         | 21.250704        | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial                     |

| 29 | ft | ft | psf | psf | psf |  |  | Deposits (Qpogf) |
|----|----|----|-----|-----|-----|--|--|------------------|
|----|----|----|-----|-----|-----|--|--|------------------|

# Proposed, Static

Report generated using GeoStudio 2021.3. Copyright © 1991-2021 GEOSLOPE International Ltd.

## **File Information**

File Version: 11.02 Title: 74th Avenue S.E. Property Created By: Brian Snow Last Edited By: Brian Snow Revision Number: 45 Date: 03/31/2023 Time: 11:03:24 AM Tool Version: 11.2.0.22838 File Name: 8332.01 Slope Stability.gsz Directory: G:\# ESNW\# INBOX\00 - Project Files\00 - Geotechnical\8332.01 - (SLOPE) 74th Avenue S.E. Property\SlopeW\ Last Solved Date: 03/31/2023 Last Solved Time: 11:03:36 AM

## **Project Settings**

Unit System: U.S. Customary Units

## **Analysis Settings**

**Proposed**, Static Kind: SLOPE/W Analysis Type: Morgenstern-Price Settings Side Function Interslice force function option: Half-Sine PWP Conditions from: (none) Unit Weight of Water: 62.430189 pcf Slip Surface Direction of movement: Left to Right Use Passive Mode: No Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1 Optimize Critical Slip Surface Location: No Tension Crack Option: (none) Distribution F of S Calculation Option: Constant Advanced **Geometry Settings** Minimum Slip Surface Depth: 5 ft Number of Slices: 30

Factor of Safety Convergence Settings Maximum Number of Iterations: 100 Tolerable difference in F of S: 0.001 Under-Relaxation Criteria Initial Rate: 1 Minimum Rate: 0.1 Rate Reduction Factor: 0.65 Reduction Frequency (iterations): 50 Solution Settings Search Method: Root Finder Tolerable difference between starting and converged F of S: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

#### **Materials**

Undisturbed Pre-Olympia Fine-Grained Glacial Deposits (Qpogf)

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 115 pcf Effective Cohesion: 1,500 psf Effective Friction Angle: 7 ° Phi-B: 0 °

Disturbed Pre-Olympia Fine-Grained Glacial Deposits (Qpogf)

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 110 pcf Effective Cohesion: 750 psf Effective Friction Angle: 5 ° Phi-B: 0 °

## **Slip Surface Entry and Exit**

Left Type: Range Left-Zone Left Coordinate: (70, 148.72727) ft Left-Zone Right Coordinate: (90, 144.66667) ft Left-Zone Increment: 20 Right Type: Range Right-Zone Left Coordinate: (125, 130) ft Right-Zone Right Coordinate: (145.5, 121) ft Right-Zone Increment: 20 Radius Increments: 4

## **Slip Surface Limits**

Left Coordinate: (0, 160) ft Right Coordinate: (204, 116) ft

# Surcharge Loads

Surcharge Load 1

Surcharge (Unit Weight): 250 pcf Direction: Vertical

#### Coordinates

| Х      | Y      |  |  |
|--------|--------|--|--|
| 193 ft | 118 ft |  |  |
| 204 ft | 118 ft |  |  |

Surcharge Load 2

Surcharge (Unit Weight): 250 pcf Direction: Vertical

#### Coordinates

| Х      | Y      |  |  |  |
|--------|--------|--|--|--|
| 65 ft  | 151 ft |  |  |  |
| 74 ft  | 149 ft |  |  |  |
| 82 ft  | 147 ft |  |  |  |
| 94 ft  | 145 ft |  |  |  |
| 103 ft | 143 ft |  |  |  |
| 108 ft | 141 ft |  |  |  |
| 110 ft | 140 ft |  |  |  |

## Geometry

Name: Proposed Geometry

#### Settings

View: 2D Element Thickness: 1 ft

#### Points

|          | Х      | Y      |
|----------|--------|--------|
| Point 1  | 0 ft   | 160 ft |
| Point 2  | 27 ft  | 158 ft |
| Point 3  | 35 ft  | 156 ft |
| Point 4  | 43 ft  | 154 ft |
| Point 5  | 49 ft  | 152 ft |
| Point 6  | 63 ft  | 150 ft |
| Point 7  | 74 ft  | 148 ft |
| Point 8  | 82 ft  | 146 ft |
| Point 9  | 94 ft  | 144 ft |
| Point 10 | 103 ft | 142 ft |
| Point 11 | 108 ft | 140 ft |
| Point 12 | 112 ft | 138 ft |

| Point 13 | 116 ft | 136 ft |
|----------|--------|--------|
| Point 14 | 119 ft | 134 ft |
| Point 15 | 122 ft | 132 ft |
| Point 16 | 125 ft | 130 ft |
| Point 17 | 128 ft | 128 ft |
| Point 18 | 133 ft | 126 ft |
| Point 19 | 138 ft | 124 ft |
| Point 20 | 143 ft | 122 ft |
| Point 21 | 148 ft | 120 ft |
| Point 22 | 153 ft | 118 ft |
| Point 23 | 204 ft | 116 ft |
| Point 24 | 204 ft | 90 ft  |
| Point 25 | 0 ft   | 90 ft  |
| Point 26 | 0 ft   | 143 ft |
| Point 27 | 27 ft  | 141 ft |
| Point 28 | 35 ft  | 139 ft |
| Point 29 | 43 ft  | 137 ft |
| Point 30 | 49 ft  | 135 ft |
| Point 31 | 63 ft  | 133 ft |
| Point 32 | 74 ft  | 131 ft |
| Point 33 | 82 ft  | 129 ft |
| Point 34 | 94 ft  | 127 ft |
| Point 35 | 103 ft | 125 ft |

### Regions

|             | Material                                                                         | Points                                                                                 | Area         |
|-------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------|
| Region<br>1 | Disturbed<br>Pre-Olympia<br>Fine-<br>Grained<br>Glacial<br>Deposits<br>(Qpogf)   | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,35,34,33,32,31,30,29,28,27,26 | 2,144<br>ft² |
| Region<br>2 | Undisturbed<br>Pre-Olympia<br>Fine-<br>Grained<br>Glacial<br>Deposits<br>(Qpogf) | 26,25,24,23,22,35,34,33,32,31,30,29,28,27                                              | 7,594<br>ft² |

## **Slip Results**

Slip Surfaces Analysed: 2046 of 2205 converged

# **Current Slip Surface**

Slip Surface: 1,213 Factor of Safety: 2.3 Volume: 531.71912 ft<sup>3</sup> Weight: 58,489.104 lbf Resisting Moment: 2,581,032.7 lbf·ft Activating Moment: 1,115,033 lbf·ft Resisting Force: 46,450.693 lbf Activating Force: 20,062.961 lbf Slip Rank: 1 of 2,205 slip surfaces Exit: (136.11855, 124.75258) ft Entry: (80.952622, 146.26184) ft Radius: 48.377658 ft Center: (122.43454, 171.15458) ft

#### **Slip Slices**

|             | X               | Y               | PWP      | Base<br>Normal<br>Stress | Frictional<br>Strength | Cohesive<br>Strength | Suction<br>Strength | Base Material                                                     |
|-------------|-----------------|-----------------|----------|--------------------------|------------------------|----------------------|---------------------|-------------------------------------------------------------------|
| Slice<br>1  | 81.476311<br>ft | 145.4281<br>ft  | 0<br>psf | -169.08 psf              | -14.792584<br>psf      | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>2  | 82.857143<br>ft | 143.37326<br>ft | 0<br>psf | 75.843338<br>psf         | 6.6354323<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>3  | 84.571429<br>ft | 141.07329<br>ft | 0<br>psf | 330.51087<br>psf         | 28.915954<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>4  | 86.285714<br>ft | 139.0299<br>ft  | 0<br>psf | 538.88955<br>psf         | 47.146726<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>5  | 88 ft           | 137.19622<br>ft | 0<br>psf | 714.91351<br>psf         | 62.546828<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>6  | 89.714286<br>ft | 135.53958<br>ft | 0<br>psf | 867.48456<br>psf         | 75.895064<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>7  | 91.428571<br>ft | 134.03612<br>ft | 0<br>psf | 1,002.6297<br>psf        | 87.718735<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>8  | 93.142857<br>ft | 132.66777<br>ft | 0<br>psf | 1,124.5898<br>psf        | 98.388862<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>9  | 94.9 ft         | 131.39218<br>ft | 0<br>psf | 1,234.2119<br>psf        | 107.97955<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>10 | 96.7 ft         | 130.20337<br>ft | 0<br>psf | 1,333.4387<br>psf        | 116.66077<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>11 | 98.5 ft         | 129.12527<br>ft | 0<br>psf | 1,425.7188<br>psf        | 124.73423<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>12 | 100.3 ft        | 128.14952<br>ft | 0<br>psf | 1,512.1916<br>psf        | 132.29962<br>psf       | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice       | 102.1 ft        | 127.26927       | 0        | 1,593.5346               | 139.41621              | 750 psf              | 0 psf               | Disturbed Pre-Olympia<br>Fine-Grained Glacial                     |

| 13          |                 | ft              | psf      | psf               | psf              |         |       | Deposits (Qpogf)                                                  |
|-------------|-----------------|-----------------|----------|-------------------|------------------|---------|-------|-------------------------------------------------------------------|
| Slice<br>14 | 103.83333<br>ft | 126.50508<br>ft | 0<br>psf | 1,652.7951<br>psf | 144.60083<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>15 | 105.5 ft        | 125.84644<br>ft | 0<br>psf | 1,689.749<br>psf  | 147.83388<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>16 | 107.16667<br>ft | 125.25776<br>ft | 0<br>psf | 1,721.5978<br>psf | 150.62029<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>17 | 109 ft          | 124.6914<br>ft  | 0<br>psf | 1,739.4665<br>psf | 152.1836<br>psf  | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>18 | 111 ft          | 124.15894<br>ft | 0<br>psf | 1,505.3942<br>psf | 131.70493<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>19 | 113 ft          | 123.71675<br>ft | 0<br>psf | 1,491.6152<br>psf | 130.49942<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>20 | 115 ft          | 123.36231<br>ft | 0<br>psf | 1,464.6936<br>psf | 128.14409<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>21 | 116.75 ft       | 123.118 ft      | 0<br>psf | 1,416.4245<br>psf | 123.92109<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>22 | 118.25 ft       | 122.96412<br>ft | 0<br>psf | 1,349.3273<br>psf | 118.05084<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>23 | 119.75 ft       | 122.85731<br>ft | 0<br>psf | 1,272.5417<br>psf | 111.33297<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>24 | 121.25 ft       | 122.79725<br>ft | 0<br>psf | 1,185.8191<br>psf | 103.74573<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>25 | 122.75 ft       | 122.78377<br>ft | 0<br>psf | 1,089.0738<br>psf | 95.281612<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>26 | 124.25 ft       | 122.81683<br>ft | 0<br>psf | 982.40319<br>psf  | 85.949142<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>27 | 125.75 ft       | 122.89652<br>ft | 0<br>psf | 866.10039<br>psf  | 75.773966<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>28 | 127.25 ft       | 123.02308<br>ft | 0<br>psf | 740.65838<br>psf  | 64.799212<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>29 | 128.83333<br>ft | 123.20934<br>ft | 0<br>psf | 623.90423<br>psf  | 54.584547<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>30 | 130.5 ft        | 123.46148<br>ft | 0<br>psf | 515.68211<br>psf  | 45.116339<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice       | 132.16667       | 123.77358       | 0        | 399.03016         | 34.910616        |         |       | Disturbed Pre-Olympia                                             |

| 31          | ft              | ft              | psf      | psf              | psf              | 750 psf | 0 psf | Fine-Grained Glacial<br>Deposits (Qpogf)                          |
|-------------|-----------------|-----------------|----------|------------------|------------------|---------|-------|-------------------------------------------------------------------|
| Slice<br>32 | 133.77964<br>ft | 124.13285<br>ft | 0<br>psf | 279.32927<br>psf | 24.438145<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |
| Slice<br>33 | 135.33891<br>ft | 124.53677<br>ft | 0<br>psf | 158.16657<br>psf | 13.837782<br>psf | 750 psf | 0 psf | Disturbed Pre-Olympia<br>Fine-Grained Glacial<br>Deposits (Qpogf) |

#### **Report Distribution**

#### ES-8332.01

EMAIL ONLYBV Homes, LLC8015 Southeast 60th StreetMercer Island, Washington 98040

Attention: Mr. Vann Lanz